IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v151y2015icp75-86.html
   My bibliography  Save this article

GAIA2: A multifunctional wireless device for enhancing crop management

Author

Listed:
  • López, Juan A.
  • Navarro, H.
  • Soto, F.
  • Pavón, N.
  • Suardíaz, J.
  • Torres, R.

Abstract

Precision agriculture is a well-known approach that allows to estimate, evaluate and understand crop evolution. This paper describes how such approach is implemented by deploying a wireless sensor network, whose main components are based on the new multifunctional wireless sensor node GAIA2, a fully configurable device (from a hardware and software point of view), that can be properly configured with the aim of acting as any node required during the network deployment and that works with well-known agricultural instrumentation. Several validation tests carried out in real arid and semiarid horticultural crops located at Southern Spain (where the existing water deficit poses a major problem for farmers), demonstrates that it is easy and moderately inexpensive to deploy a GAIA2-based wireless sensor network that helps farmers to improve crop management.

Suggested Citation

  • López, Juan A. & Navarro, H. & Soto, F. & Pavón, N. & Suardíaz, J. & Torres, R., 2015. "GAIA2: A multifunctional wireless device for enhancing crop management," Agricultural Water Management, Elsevier, vol. 151(C), pages 75-86.
  • Handle: RePEc:eee:agiwat:v:151:y:2015:i:c:p:75-86
    DOI: 10.1016/j.agwat.2014.10.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377414003436
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2014.10.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hedley, C.B. & Yule, I.J., 2009. "A method for spatial prediction of daily soil water status for precise irrigation scheduling," Agricultural Water Management, Elsevier, vol. 96(12), pages 1737-1745, December.
    2. Puerto, P. & Domingo, R. & Torres, R. & Pérez-Pastor, A. & García-Riquelme, M., 2013. "Remote management of deficit irrigation in almond trees based on maximum daily trunk shrinkage. Water relations and yield," Agricultural Water Management, Elsevier, vol. 126(C), pages 33-45.
    3. Nolz, R. & Kammerer, G. & Cepuder, P., 2013. "Calibrating soil water potential sensors integrated into a wireless monitoring network," Agricultural Water Management, Elsevier, vol. 116(C), pages 12-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. López-Riquelme, J.A. & Pavón-Pulido, N. & Navarro-Hellín, H. & Soto-Valles, F. & Torres-Sánchez, R., 2017. "A software architecture based on FIWARE cloud for Precision Agriculture," Agricultural Water Management, Elsevier, vol. 183(C), pages 123-135.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Navarro-Hellín, H. & Torres-Sánchez, R. & Soto-Valles, F. & Albaladejo-Pérez, C. & López-Riquelme, J.A. & Domingo-Miguel, R., 2015. "A wireless sensors architecture for efficient irrigation water management," Agricultural Water Management, Elsevier, vol. 151(C), pages 64-74.
    2. Nolz, R. & Cepuder, P. & Balas, J. & Loiskandl, W., 2016. "Soil water monitoring in a vineyard and assessment of unsaturated hydraulic parameters as thresholds for irrigation management," Agricultural Water Management, Elsevier, vol. 164(P2), pages 235-242.
    3. Mirás-Avalos, José M. & Gonzalez-Dugo, Victoria & García-Tejero, Iván F. & López-Urrea, Ramón & Intrigliolo, Diego S. & Egea, Gregorio, 2023. "Quantitative analysis of almond yield response to irrigation regimes in Mediterranean Spain," Agricultural Water Management, Elsevier, vol. 279(C).
    4. Hunsaker, D.J. & French, A.N. & Waller, P.M. & Bautista, E. & Thorp, K.R. & Bronson, K.F. & Andrade-Sanchez, P., 2015. "Comparison of traditional and ET-based irrigation scheduling of surface-irrigated cotton in the arid southwestern USA," Agricultural Water Management, Elsevier, vol. 159(C), pages 209-224.
    5. Assouline, Shmuel & Hochberg, Uri & Silber, Avner, 2021. "The impact of tree phenology on the response of irrigated avocado: The hysteretic nature of the maximum trunk daily shrinkage," Agricultural Water Management, Elsevier, vol. 256(C).
    6. Olutobi Adeyemi & Ivan Grove & Sven Peets & Tomas Norton, 2017. "Advanced Monitoring and Management Systems for Improving Sustainability in Precision Irrigation," Sustainability, MDPI, vol. 9(3), pages 1-29, February.
    7. Corell, M. & Girón, I.F. & Galindo, A. & Torrecillas, A. & Torres-Sánchez, R. & Pérez-Pastor, A. & Moreno, F. & Moriana, A., 2014. "Using band dendrometers in irrigation scheduling," Agricultural Water Management, Elsevier, vol. 142(C), pages 29-37.
    8. Martín-Palomo, M.J. & Corell, M. & Girón, I. & Andreu, L. & Trigo, E. & López-Moreno, Y.E. & Torrecillas, A. & Centeno, A. & Pérez-López, D. & Moriana, A., 2019. "Pattern of trunk diameter fluctuations of almond trees in deficit irrigation scheduling during the first seasons," Agricultural Water Management, Elsevier, vol. 218(C), pages 115-123.
    9. Li, Jinwen & Qian, Xiaoyong & Zhang, Min & Fu, Kan & Zhu, Wenjun & Zhao, Qingjie & Shen, Genxiang & Wang, Zhenqi & Chen, Xiaohua, 2021. "Methodology for studying nitrogen loss from paddy fields under alternate wetting and drying irrigation in the lower reaches of the Yangtze River in China," Agricultural Water Management, Elsevier, vol. 254(C).
    10. Blanco, Victor & Kalcsits, Lee, 2023. "Long-term validation of continuous measurements of trunk water potential and trunk diameter indicate different diurnal patterns for pear under water limitations," Agricultural Water Management, Elsevier, vol. 281(C).
    11. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    12. De la Rosa, J.M. & Domingo, R. & Gómez-Montiel, J. & Pérez-Pastor, A., 2015. "Implementing deficit irrigation scheduling through plant water stress indicators in early nectarine trees," Agricultural Water Management, Elsevier, vol. 152(C), pages 207-216.
    13. El-Naggar, A.G. & Hedley, C.B. & Horne, D. & Roudier, P. & Clothier, B.E., 2020. "Soil sensing technology improves application of irrigation water," Agricultural Water Management, Elsevier, vol. 228(C).
    14. Fernández-Pacheco, D.G. & Ferrández-Villena, M. & Molina-Martínez, J.M. & Ruiz-Canales, A., 2015. "Performance indicators to assess the implementation of automation in water user associations: A case study in southeast Spain," Agricultural Water Management, Elsevier, vol. 151(C), pages 87-92.
    15. Temnani, Abdelmalek & Berríos, Pablo & Zapata-García, Susana & Pérez-Pastor, Alejandro, 2023. "Deficit irrigation strategies of flat peach trees under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 287(C).
    16. López-Riquelme, J.A. & Pavón-Pulido, N. & Navarro-Hellín, H. & Soto-Valles, F. & Torres-Sánchez, R., 2017. "A software architecture based on FIWARE cloud for Precision Agriculture," Agricultural Water Management, Elsevier, vol. 183(C), pages 123-135.
    17. José Manuel Mirás-Avalos & Pedro Marco & Sergio Sánchez & Beatriz Bielsa & María José Rubio Cabetas & Vicente González, 2022. "Soil Quality Index of Young and Differently Managed Almond Orchards under Mediterranean Conditions," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    18. Beeson Jr., R.C., 2011. "Weighing lysimeter systems for quantifying water use and studies of controlled water stress for crops grown in low bulk density substrates," Agricultural Water Management, Elsevier, vol. 98(6), pages 967-976, April.
    19. Conesa, M.R. & Torres, R. & Domingo, R. & Navarro, H. & Soto, F. & Pérez-Pastor, A., 2016. "Maximum daily trunk shrinkage and stem water potential reference equations for irrigation scheduling in table grapes," Agricultural Water Management, Elsevier, vol. 172(C), pages 51-61.
    20. Bhatti, Sandeep & Heeren, Derek M. & Barker, J. Burdette & Neale, Christopher M.U. & Woldt, Wayne E. & Maguire, Mitchell S. & Rudnick, Daran R., 2020. "Site-specific irrigation management in a sub-humid climate using a spatial evapotranspiration model with satellite and airborne imagery," Agricultural Water Management, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:151:y:2015:i:c:p:75-86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.