Soil spatio-temporal distribution of water, salts and nutrients in greenhouse, drip-irrigated tomato crops using lysimetry and dielectric methods
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2018.03.009
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Orgaz, F. & Fernandez, M.D. & Bonachela, S. & Gallardo, M. & Fereres, E., 2005. "Evapotranspiration of horticultural crops in an unheated plastic greenhouse," Agricultural Water Management, Elsevier, vol. 72(2), pages 81-96, March.
- Shalhevet, Joseph, 1994. "Using water of marginal quality for crop production: major issues," Agricultural Water Management, Elsevier, vol. 25(3), pages 233-269, July.
- Cabrera Corral, Francisco Javier & Bonachela Castaño, Santiago & Fernández Fernández, María Dolores & Granados García, María Rosa & López Hernández, Juan Carlos, 2016. "Lysimetry methods for monitoring soil solution electrical conductivity and nutrient concentration in greenhouse tomato crops," Agricultural Water Management, Elsevier, vol. 178(C), pages 171-179.
- Thompson, R.B. & Martinez-Gaitan, C. & Gallardo, M. & Gimenez, C. & Fernandez, M.D., 2007. "Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey," Agricultural Water Management, Elsevier, vol. 89(3), pages 261-274, May.
- Thompson, R.B. & Gallardo, M. & Valdez, L.C. & Fernandez, M.D., 2007. "Using plant water status to define threshold values for irrigation management of vegetable crops using soil moisture sensors," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 147-158, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wei Yang & Xingsheng Song & Yangbo He & Bige Chen & Ying Zhou & Jiazhou Chen, 2023. "Distribution of Soil Organic Carbon Density Fractions in Aggregates as Influenced by Salts and Microbial Community," Land, MDPI, vol. 12(11), pages 1-14, November.
- Bonachela, Santiago & Fernández, María Dolores & Cabrera-Corral, Francisco Javier & Granados, María Rosa, 2022. "Salt and irrigation management of soil-grown Mediterranean greenhouse tomato crops drip-irrigated with moderately saline water," Agricultural Water Management, Elsevier, vol. 262(C).
- Li Yang & Haijun Liu & Shabtai Cohen & Zhuangzhuang Gao, 2022. "Microclimate and Plant Transpiration of Tomato ( Solanum lycopersicum L.) in a Sunken Solar Greenhouse in North China," Agriculture, MDPI, vol. 12(2), pages 1-21, February.
- Cedeño, J. & Magán, J.J. & Thompson, R.B. & Fernández, M.D. & Gallardo, M., 2023. "Reducing nutrient loss in drainage from tomato grown in free-draining substrate in greenhouses using dynamic nutrient management," Agricultural Water Management, Elsevier, vol. 287(C).
- Phogat, V. & Mallants, Dirk & Cox, J.W. & Šimůnek, J. & Oliver, D.P. & Awad, J., 2020. "Management of soil salinity associated with irrigation of protected crops," Agricultural Water Management, Elsevier, vol. 227(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bonachela, Santiago & Fernández, María Dolores & Cabrera-Corral, Francisco Javier & Granados, María Rosa, 2022. "Salt and irrigation management of soil-grown Mediterranean greenhouse tomato crops drip-irrigated with moderately saline water," Agricultural Water Management, Elsevier, vol. 262(C).
- Thompson, R.B. & Gallardo, M. & Valdez, L.C. & Fernandez, M.D., 2007. "Determination of lower limits for irrigation management using in situ assessments of apparent crop water uptake made with volumetric soil water content sensors," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 13-28, August.
- Incrocci, Luca & Thompson, Rodney B. & Fernandez-Fernandez, María Dolores & De Pascale, Stefania & Pardossi, Alberto & Stanghellini, Cecilia & Rouphael, Youssef & Gallardo, Marisa, 2020. "Irrigation management of European greenhouse vegetable crops," Agricultural Water Management, Elsevier, vol. 242(C).
- Gallardo, M. & Giménez, C. & Martínez-Gaitán, C. & Stöckle, C.O. & Thompson, R.B. & Granados, M.R., 2011. "Evaluation of the VegSyst model with muskmelon to simulate crop growth, nitrogen uptake and evapotranspiration," Agricultural Water Management, Elsevier, vol. 101(1), pages 107-117.
- Gallardo, M. & Thompson, R.B. & Rodríguez, J.S. & Rodríguez, F. & Fernández, M.D. & Sánchez, J.A. & Magán, J.J., 2009. "Simulation of transpiration, drainage, N uptake, nitrate leaching, and N uptake concentration in tomato grown in open substrate," Agricultural Water Management, Elsevier, vol. 96(12), pages 1773-1784, December.
- Yasuor, Hagai & Yermiyahu, Uri & Ben-Gal, Alon, 2020. "Consequences of irrigation and fertigation of vegetable crops with variable quality water: Israel as a case study," Agricultural Water Management, Elsevier, vol. 242(C).
- Contreras, J.I. & Alonso, F. & Cánovas, G. & Baeza, R., 2017. "Irrigation management of greenhouse zucchini with different soil matric potential level. Agronomic and environmental effects," Agricultural Water Management, Elsevier, vol. 183(C), pages 26-34.
- Soto, F. & Gallardo, M. & Giménez, C. & Peña-Fleitas, T. & Thompson, R.B., 2014. "Simulation of tomato growth, water and N dynamics using the EU-Rotate_N model in Mediterranean greenhouses with drip irrigation and fertigation," Agricultural Water Management, Elsevier, vol. 132(C), pages 46-59.
- Dean C. J. Rice & Rupp Carriveau & David S. -K. Ting & Mo’tamad H. Bata, 2017. "Evaluation of Crop to Crop Water Demand Forecasting: Tomatoes and Bell Peppers Grown in a Commercial Greenhouse," Agriculture, MDPI, vol. 7(12), pages 1-14, December.
- Gallardo, Marisa & Elia, Antonio & Thompson, Rodney B., 2020. "Decision support systems and models for aiding irrigation and nutrient management of vegetable crops," Agricultural Water Management, Elsevier, vol. 240(C).
- Li Yang & Haijun Liu & Shabtai Cohen & Zhuangzhuang Gao, 2022. "Microclimate and Plant Transpiration of Tomato ( Solanum lycopersicum L.) in a Sunken Solar Greenhouse in North China," Agriculture, MDPI, vol. 12(2), pages 1-21, February.
- Gallardo, M. & Fernández, M.D. & Giménez, C. & Padilla, F.M. & Thompson, R.B., 2016. "Revised VegSyst model to calculate dry matter production, critical N uptake and ETc of several vegetable species grown in Mediterranean greenhouses," Agricultural Systems, Elsevier, vol. 146(C), pages 30-43.
- Soto, F. & Thompson, R.B. & Granados, M.R. & Martínez-Gaitán, C. & Gallardo, M., 2018. "Simulation of agronomic and nitrate pollution related parameters in vegetable cropping sequences in Mediterranean greenhouses using the EU-Rotate_N model," Agricultural Water Management, Elsevier, vol. 199(C), pages 175-189.
- Phogat, V. & Mallants, Dirk & Cox, J.W. & Šimůnek, J. & Oliver, D.P. & Awad, J., 2020. "Management of soil salinity associated with irrigation of protected crops," Agricultural Water Management, Elsevier, vol. 227(C).
- José Sánchez & Juan Reca & Juan Martínez, 2015. "Water Productivity in a Mediterranean Semi-Arid Greenhouse District," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5395-5411, November.
- Reca, J. & Trillo, C. & Sánchez, J.A. & Martínez, J. & Valera, D., 2018. "Optimization model for on-farm irrigation management of Mediterranean greenhouse crops using desalinated and saline water from different sources," Agricultural Systems, Elsevier, vol. 166(C), pages 173-183.
- Farhadi Machekposhti, Mabood & Shahnazari, Ali & Z. Ahmadi, Mirkhalegh & Aghajani, Ghasem & Ritzema, Henk, 2017. "Effect of irrigation with sea water on soil salinity and yield of oleic sunflower," Agricultural Water Management, Elsevier, vol. 188(C), pages 69-78.
- Katerji, N. & van Hoorn, J. W. & Hamdy, A. & Mastrorilli, M., 2004. "Comparison of corn yield response to plant water stress caused by salinity and by drought," Agricultural Water Management, Elsevier, vol. 65(2), pages 95-101, March.
- Bohua Yu & Wei Song & Yanqing Lang, 2017. "Spatial Patterns and Driving Forces of Greenhouse Land Change in Shouguang City, China," Sustainability, MDPI, vol. 9(3), pages 1-15, March.
- Ferreyra, Raul E. & Aljaro, Agustin U. & Ruiz, Rafael Sch. & Rojas, Leonardo P. & Oster, J. D., 1997. "Behavior of 42 crop species grown in saline soils with high boron concentrations," Agricultural Water Management, Elsevier, vol. 34(2), pages 111-124, August.
More about this item
Keywords
Bulk and solution electrical conductivity; Dielectric permittivity; GS3; Soil matric potential; Salinity; Suction cup;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:203:y:2018:i:c:p:151-161. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.