IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v279y2023ics0378377423000793.html
   My bibliography  Save this article

Assessment of canopy temperature-based water stress indices for irrigated and rainfed soybeans under subhumid conditions

Author

Listed:
  • Morales-Santos, Angela
  • Nolz, Reinhard

Abstract

Crop stress indicators can serve as a basis for demand-oriented irrigation management. Canopy temperature-based algorithms in combination with nondestructive infrared thermometer measurements are widely used, mainly in arid regions. Due to the impact of climate change on agricultural production, canopy temperature-based indices are increasingly applied in humid areas of Central Europe. This requires an evaluation of the algorithms under local environmental conditions. The objective of this study was to assess the Crop Water Stress Index (CWSI) and the Degrees Above Canopy Threshold (DACT) as irrigation scheduling methods in a subhumid agricultural area in Austria. The study was performed in 2018 and 2019 on a soybean field that was divided into four plots under different water management conditions. One of the plots was irrigated by means of sprinklers (SI plot), another one by drip lines (DI plot) and a third one by a hose reel boom (BI plot). The fourth plot (NI) was rainfed. To be able to relate crop water status to soil water status, soil matric potential (Ψm) was monitored at 20, 40 and 60 cm depths. Both CWSI and DACT reflected the different plant water conditions accordingly. The highest stress levels were found in the NI plot, followed by the SI, DI and BI plots. The interpretation of the indices regarding cloudy skies was improved by using the maximum CWSI and DACT observed between 1000 h and 1600 h. Overall, the plots with lower seasonal mean indices produced larger yields, and vice versa. The Ψm correlation results suggested that under severe stress, a better representation of soil water availability down to 60 cm can be obtained when using the DACT compared to the CWSI. The DACT was considered a more practical alternative than the CWSI since it requires less effort and proved to be equally effective.

Suggested Citation

  • Morales-Santos, Angela & Nolz, Reinhard, 2023. "Assessment of canopy temperature-based water stress indices for irrigated and rainfed soybeans under subhumid conditions," Agricultural Water Management, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:agiwat:v:279:y:2023:i:c:s0378377423000793
    DOI: 10.1016/j.agwat.2023.108214
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423000793
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108214?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lebourgeois, V. & Chopart, J.-L. & Bégué, A. & Le Mézo, L., 2010. "Towards using a thermal infrared index combined with water balance modelling to monitor sugarcane irrigation in a tropical environment," Agricultural Water Management, Elsevier, vol. 97(1), pages 75-82, January.
    2. Candogan, Burak Nazmi & Sincik, Mehmet & Buyukcangaz, Hakan & Demirtas, Cigdem & Goksoy, Abdurrahim Tanju & Yazgan, Senih, 2013. "Yield, quality and crop water stress index relationships for deficit-irrigated soybean [Glycine max (L.) Merr.] in sub-humid climatic conditions," Agricultural Water Management, Elsevier, vol. 118(C), pages 113-121.
    3. Wanjura, Donald F. & Upchurch, Dan R., 1997. "Accounting for humidity in canopy-temperature-controlled irrigation scheduling," Agricultural Water Management, Elsevier, vol. 34(3), pages 217-231, October.
    4. Chen, Jiazhou & Lin, Lirong & Lü, Guoan, 2010. "An index of soil drought intensity and degree: An application on corn and a comparison with CWSI," Agricultural Water Management, Elsevier, vol. 97(6), pages 865-871, June.
    5. DeJonge, Kendall C. & Taghvaeian, Saleh & Trout, Thomas J. & Comas, Louise H., 2015. "Comparison of canopy temperature-based water stress indices for maize," Agricultural Water Management, Elsevier, vol. 156(C), pages 51-62.
    6. Erdem, Yesim & Arin, Levent & Erdem, Tolga & Polat, Serdar & Deveci, Murat & Okursoy, Hakan & Gültas, Hüseyin T., 2010. "Crop water stress index for assessing irrigation scheduling of drip irrigated broccoli (Brassica oleracea L. var. italica)," Agricultural Water Management, Elsevier, vol. 98(1), pages 148-156, December.
    7. Nolz, R. & Kammerer, G. & Cepuder, P., 2013. "Calibrating soil water potential sensors integrated into a wireless monitoring network," Agricultural Water Management, Elsevier, vol. 116(C), pages 12-20.
    8. O'Shaughnessy, Susan A. & Evett, Steven R. & Colaizzi, Paul D. & Howell, Terry A., 2012. "A crop water stress index and time threshold for automatic irrigation scheduling of grain sorghum," Agricultural Water Management, Elsevier, vol. 107(C), pages 122-132.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Susanta & Kaur, Samanpreet & Sharma, Vivek, 2024. "Determination of threshold crop water stress index for sub-surface drip irrigated maize-wheat cropping sequence in semi-arid region of Punjab," Agricultural Water Management, Elsevier, vol. 301(C).
    2. Katimbo, Abia & Rudnick, Daran R. & DeJonge, Kendall C. & Lo, Tsz Him & Qiao, Xin & Franz, Trenton E. & Nakabuye, Hope Njuki & Duan, Jiaming, 2022. "Crop water stress index computation approaches and their sensitivity to soil water dynamics," Agricultural Water Management, Elsevier, vol. 266(C).
    3. Zhang, Xiaoyu & Zhang, Xiying & Liu, Xiuwei & Shao, Liwei & Sun, Hongyong & Chen, Suying, 2015. "Incorporating root distribution factor to evaluate soil water status for winter wheat," Agricultural Water Management, Elsevier, vol. 153(C), pages 32-41.
    4. Singh, Jasreman & Ge, Yufeng & Heeren, Derek M. & Walter-Shea, Elizabeth & Neale, Christopher M.U. & Irmak, Suat & Woldt, Wayne E. & Bai, Geng & Bhatti, Sandeep & Maguire, Mitchell S., 2021. "Inter-relationships between water depletion and temperature differential in row crop canopies in a sub-humid climate," Agricultural Water Management, Elsevier, vol. 256(C).
    5. Khorsand, Afshin & Rezaverdinejad, Vahid & Asgarzadeh, Hossein & Majnooni-Heris, Abolfazl & Rahimi, Amir & Besharat, Sina, 2019. "Irrigation scheduling of maize based on plant and soil indices with surface drip irrigation subjected to different irrigation regimes," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    6. Erdem, Yesim & Arin, Levent & Erdem, Tolga & Polat, Serdar & Deveci, Murat & Okursoy, Hakan & Gültas, Hüseyin T., 2010. "Crop water stress index for assessing irrigation scheduling of drip irrigated broccoli (Brassica oleracea L. var. italica)," Agricultural Water Management, Elsevier, vol. 98(1), pages 148-156, December.
    7. Nakabuye, Hope Njuki & Rudnick, Daran & DeJonge, Kendall C. & Lo, Tsz Him & Heeren, Derek & Qiao, Xin & Franz, Trenton E. & Katimbo, Abia & Duan, Jiaming, 2022. "Real-time irrigation scheduling of maize using Degrees Above Non-Stressed (DANS) index in semi-arid environment," Agricultural Water Management, Elsevier, vol. 274(C).
    8. Ezenne, G.I. & Jupp, Louise & Mantel, S.K. & Tanner, J.L., 2019. "Current and potential capabilities of UAS for crop water productivity in precision agriculture," Agricultural Water Management, Elsevier, vol. 218(C), pages 158-164.
    9. Zhang, Minne & Zhao, Weixia & Zhu, Changxin & Li, Jiusheng, 2024. "Influence of the sampling time interval of canopy temperature on the dynamic zoning of variable rate irrigation," Agricultural Water Management, Elsevier, vol. 295(C).
    10. Candogan, Burak Nazmi & Sincik, Mehmet & Buyukcangaz, Hakan & Demirtas, Cigdem & Goksoy, Abdurrahim Tanju & Yazgan, Senih, 2013. "Yield, quality and crop water stress index relationships for deficit-irrigated soybean [Glycine max (L.) Merr.] in sub-humid climatic conditions," Agricultural Water Management, Elsevier, vol. 118(C), pages 113-121.
    11. Wu, Yinshan & Jiang, Jie & Zhang, Xiufeng & Zhang, Jiayi & Cao, Qiang & Tian, Yongchao & Zhu, Yan & Cao, Weixing & Liu, Xiaojun, 2023. "Combining machine learning algorithm and multi-temporal temperature indices to estimate the water status of rice," Agricultural Water Management, Elsevier, vol. 289(C).
    12. Anzhen Qin & Dongfeng Ning & Zhandong Liu & Sen Li & Ben Zhao & Aiwang Duan, 2021. "Determining Threshold Values for a Crop Water Stress Index-Based Center Pivot Irrigation with Optimum Grain Yield," Agriculture, MDPI, vol. 11(10), pages 1-16, October.
    13. O’Shaughnessy, Susan A. & Kim, Minyoung & Andrade, Manuel A. & Colaizzi, Paul D. & Evett, Steven R., 2020. "Site-specific irrigation of grain sorghum using plant and soil water sensing feedback - Texas High Plains," Agricultural Water Management, Elsevier, vol. 240(C).
    14. Olutobi Adeyemi & Ivan Grove & Sven Peets & Tomas Norton, 2017. "Advanced Monitoring and Management Systems for Improving Sustainability in Precision Irrigation," Sustainability, MDPI, vol. 9(3), pages 1-29, February.
    15. Drechsler, Kelley & Kisekka, Isaya & Upadhyaya, Shrinivasa, 2019. "A comprehensive stress indicator for evaluating plant water status in almond trees," Agricultural Water Management, Elsevier, vol. 216(C), pages 214-223.
    16. DeJonge, Kendall C. & Taghvaeian, Saleh & Trout, Thomas J. & Comas, Louise H., 2015. "Comparison of canopy temperature-based water stress indices for maize," Agricultural Water Management, Elsevier, vol. 156(C), pages 51-62.
    17. Luan, Yajun & Xu, Junzeng & Lv, Yuping & Liu, Xiaoyin & Wang, Haiyu & Liu, Shimeng, 2021. "Improving the performance in crop water deficit diagnosis with canopy temperature spatial distribution information measured by thermal imaging," Agricultural Water Management, Elsevier, vol. 246(C).
    18. Han, Ming & Zhang, Huihui & DeJonge, Kendall C. & Comas, Louise H. & Gleason, Sean, 2018. "Comparison of three crop water stress index models with sap flow measurements in maize," Agricultural Water Management, Elsevier, vol. 203(C), pages 366-375.
    19. Zhang, Liyuan & Zhang, Huihui & Zhu, Qingzhen & Niu, Yaxiao, 2023. "Further investigating the performance of crop water stress index for maize from baseline fluctuation, effects of environmental factors, and variation of critical value," Agricultural Water Management, Elsevier, vol. 285(C).
    20. Silva, Marcos Dornelas Freitas Machado e & Calijuri, Maria Lúcia & Sales, Francisco José Ferreira de & Souza, Mauro Henrique Batalha de & Lopes, Lucas Sampaio, 2014. "Integration of technologies and alternative sources of water and energy to promote the sustainability of urban landscapes," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 71-81.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:279:y:2023:i:c:s0378377423000793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.