IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v116y2013icp228-234.html
   My bibliography  Save this article

Conjunctive use of reclaimed water and groundwater in crop rotations

Author

Listed:
  • Al Khamisi, Saif A.
  • Prathapar, S.A.
  • Ahmed, M.

Abstract

Irrigated agriculture in Oman relies solely on groundwater and Aflaj (Falaj is a canal system, which provides water for a community of farmers for domestic and agricultural use). With the increasing scarcity of freshwater available to agriculture, the need to use of reclaimed water (RW) from Sewage Treatment Plants (STP) in agriculture has increased. In this study, we explored how RW from an STP can be used directly, without Aquifer Storage and Recovery, as a source of irrigation water in conjunction with groundwater for agriculture. Average data from Muscat, Oman in the years from 1996 to 2010 was used for calculation of crop water requirement. Wheat, cowpea and maize were chosen as crops to be grown in rotation through the year. Using RW irrigation conjunctively with groundwater cropping areas of wheat, cowpea and maize can be increased by 323, 250 and 318% respectively, against utilization RW only. Of the total irrigation requirement 57.6% was met with reclaimed water (RW) and 42.4% was met with groundwater (GW). Therefore, it is recommended that decision makers should consider piping RW to areas where groundwater of good quality is available to conjunctively use and meet crop water requirements, rather than piping it to areas where groundwater is saline and unsuitable for irrigation. This will prevent disposal of RW to the sea and minimize stress on fresh groundwater zones.

Suggested Citation

  • Al Khamisi, Saif A. & Prathapar, S.A. & Ahmed, M., 2013. "Conjunctive use of reclaimed water and groundwater in crop rotations," Agricultural Water Management, Elsevier, vol. 116(C), pages 228-234.
  • Handle: RePEc:eee:agiwat:v:116:y:2013:i:c:p:228-234
    DOI: 10.1016/j.agwat.2012.07.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377412002065
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2012.07.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Letey, J. & Feng, G.L., 2007. "Dynamic versus steady-state approaches to evaluate irrigation management of saline waters," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 1-10, July.
    2. Qadir, M. & Sharma, B.R. & Bruggeman, A. & Choukr-Allah, R. & Karajeh, F., 2007. "Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries," Agricultural Water Management, Elsevier, vol. 87(1), pages 2-22, January.
    3. Corwin, Dennis L. & Rhoades, James D. & Simunek, Jirka, 2007. "Leaching requirement for soil salinity control: Steady-state versus transient models," Agricultural Water Management, Elsevier, vol. 90(3), pages 165-180, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Murad, Khandakar Faisal Ibn & Hossain, Akbar & Fakir, Oli Ahmed & Biswas, Sujit Kumar & Sarker, Khokan Kumer & Rannu, Rahena Parvin & Timsina, Jagadish, 2018. "Conjunctive use of saline and fresh water increases the productivity of maize in saline coastal region of Bangladesh," Agricultural Water Management, Elsevier, vol. 204(C), pages 262-270.
    2. Hu, Hong-you & Zhang, Linus & Wang, YuanPeng, 2016. "Crop development based assessment framework for guiding the conjunctive use of fresh water and sewage water for cropping practice—A case study," Agricultural Water Management, Elsevier, vol. 169(C), pages 98-105.
    3. Yousefi, Maryam & Banihabib, Mohammad Ebrahim & Soltani, Jaber & Roozbahani, Abbas, 2018. "Multi-objective particle swarm optimization model for conjunctive use of treated wastewater and groundwater," Agricultural Water Management, Elsevier, vol. 208(C), pages 224-231.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    2. Yasuor, Hagai & Yermiyahu, Uri & Ben-Gal, Alon, 2020. "Consequences of irrigation and fertigation of vegetable crops with variable quality water: Israel as a case study," Agricultural Water Management, Elsevier, vol. 242(C).
    3. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    4. Ben-Gal, Alon & Ityel, Eviatar & Dudley, Lynn & Cohen, Shabtai & Yermiyahu, Uri & Presnov, Eugene & Zigmond, Leah & Shani, Uri, 2008. "Effect of irrigation water salinity on transpiration and on leaching requirements: A case study for bell peppers," Agricultural Water Management, Elsevier, vol. 95(5), pages 587-597, May.
    5. Shahrokhnia, Hossein & Wu, Laosheng, 2021. "SALEACH: A new web-based soil salinity leaching model for improved irrigation management," Agricultural Water Management, Elsevier, vol. 252(C).
    6. Gill, Bruce C. & Terry, Alister D., 2016. "‘Keeping salt on the farm’—Evaluation of an on-farm salinity management system in the Shepparton irrigation region of South-East Australia," Agricultural Water Management, Elsevier, vol. 164(P2), pages 291-303.
    7. Amninder Singh & Nigel W. T. Quinn & Sharon E. Benes & Florence Cassel, 2020. "Policy-Driven Sustainable Saline Drainage Disposal and Forage Production in the Western San Joaquin Valley of California," Sustainability, MDPI, vol. 12(16), pages 1-27, August.
    8. Barnard, J.H. & Bennie, A.T.P. & van Rensburg, L.D. & Preez, C.C. du, 2015. "SWAMP: A soil layer water supply model for simulating macroscopic crop water uptake under osmotic stress," Agricultural Water Management, Elsevier, vol. 148(C), pages 150-163.
    9. Wichelns, Dennis & Qadir, Manzoor, 2015. "Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater," Agricultural Water Management, Elsevier, vol. 157(C), pages 31-38.
    10. Khan, Shahbaz & Rana, Tariq & Hanjra, Munir A. & Zirilli, John, 2009. "Water markets and soil salinity nexus: Can minimum irrigation intensities address the issue?," Agricultural Water Management, Elsevier, vol. 96(3), pages 493-503, March.
    11. Letey, J. & Hoffman, G.J. & Hopmans, J.W. & Grattan, S.R. & Suarez, D. & Corwin, D.L. & Oster, J.D. & Wu, L. & Amrhein, C., 2011. "Evaluation of soil salinity leaching requirement guidelines," Agricultural Water Management, Elsevier, vol. 98(4), pages 502-506, February.
    12. Tripler, Effi & Shani, Uri & Ben-Gal, Alon & Mualem, Yechezkel, 2012. "Apparent steady state conditions in high resolution weighing-drainage lysimeters containing date palms grown under different salinities," Agricultural Water Management, Elsevier, vol. 107(C), pages 66-73.
    13. Skaggs, T.H. & Suarez, D.L. & Goldberg, S. & Shouse, P.J., 2012. "Replicated lysimeter measurements of tracer transport in clayey soils: Effects of irrigation water salinity," Agricultural Water Management, Elsevier, vol. 110(C), pages 84-93.
    14. Heidarpour, M. & Mostafazadeh-Fard, B. & Abedi Koupai, J. & Malekian, R., 2007. "The effects of treated wastewater on soil chemical properties using subsurface and surface irrigation methods," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 87-94, May.
    15. Zvi Baum & Ruslana Rachel Palatnik & Iddo Kan & Mickey Rapaport-Rom, 2016. "Economic Impacts of Water Scarcity Under Diverse Water Salinities," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-22, March.
    16. Singh, R.B. & Chauhan, C.P.S. & Minhas, P.S., 2009. "Water production functions of wheat (Triticum aestivum L.) irrigated with saline and alkali waters using double-line source sprinkler system," Agricultural Water Management, Elsevier, vol. 96(5), pages 736-744, May.
    17. Calzadilla, Alvaro & Rehdanz, Katrin & Tol, Richard S.J., 2008. "Water scarcity and the impact of improved irrigation management: A CGE analysis," Conference papers 331788, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. Zijie Sang & Ge Zhang & Haiqing Wang & Wangyang Zhang & Yuxiu Chen & Mingyang Han & Ke Yang, 2023. "Effective Solutions to Ecological and Water Environment Problems in the Sanjiang Plain: Utilization of Farmland Drainage Resources," Sustainability, MDPI, vol. 15(23), pages 1-14, November.
    19. Chen, Ming & Kang, Yaohu & Wan, Shuqin & Liu, Shi-ping, 2009. "Drip irrigation with saline water for oleic sunflower (Helianthus annuus L.)," Agricultural Water Management, Elsevier, vol. 96(12), pages 1766-1772, December.
    20. van der Zee, S.E.A.T.M. & Shah, S.H.H. & van Uffelen, C.G.R. & Raats, P.A.C. & dal Ferro, N., 2010. "Soil sodicity as a result of periodical drought," Agricultural Water Management, Elsevier, vol. 97(1), pages 41-49, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:116:y:2013:i:c:p:228-234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.