IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v195y2018icp1-10.html
   My bibliography  Save this article

Soil and irrigation heterogeneity effects on drainage amount and concentration in lysimeters: A numerical study

Author

Listed:
  • Raij, Iael
  • Ben-Gal, Alon
  • Lazarovitch, Naftali

Abstract

Water and solute fluxes measured from lysimeters located in the field can be used to estimate evapotranspiration, for irrigation scheduling and in solute leaching management. System-imposed heterogeneities are expected to affect the variability of the measured fluxes, and therefore the uncertainty of data obtained using lysimeters. In this study, local heterogeneities in soil hydraulic conductivity and dripper discharge rate were studied and their effect on drainage amount and concentration assessed. Three-dimensional simulations were performed with HYDRUS (2D/3D) with 100 simulations per treatment. The effect of three levels of soil and irrigation heterogeneities was studied for lysimeters of two different sizes (1m2 and 0.5m2). Additionally, three leaching fraction levels and water uptake reduction due to solute stress were evaluated. Coefficient of variations of the drainage amount and solute concentrations were evaluated for the different scenarios. Irrigation heterogeneity caused higher variability in drainage amount while soil heterogeneity caused higher variability in drainage concentration. The larger the lysimeter, or the higher the leaching fraction, the lower the variability for both drainage concentration and amount. Combined soil and irrigation heterogeneities produced no synergistic effect, suggesting that the variability measured in lysimeters was governed by the factor that caused the highest variability. When water uptake reduction due to salinity was considered, the same trends were observed. The results from this study can help to decide if to use either drainage concentration or amount values, for saline water irrigation management using lysimeters, according to the soil or irrigation heterogeneity levels.

Suggested Citation

  • Raij, Iael & Ben-Gal, Alon & Lazarovitch, Naftali, 2018. "Soil and irrigation heterogeneity effects on drainage amount and concentration in lysimeters: A numerical study," Agricultural Water Management, Elsevier, vol. 195(C), pages 1-10.
  • Handle: RePEc:eee:agiwat:v:195:y:2018:i:c:p:1-10
    DOI: 10.1016/j.agwat.2017.09.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377417303074
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.09.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruiz-Peñalver, L. & Vera-Repullo, J.A. & Jiménez-Buendía, M. & Guzmán, I. & Molina-Martínez, J.M., 2015. "Development of an innovative low cost weighing lysimeter for potted plants: Application in lysimetric stations," Agricultural Water Management, Elsevier, vol. 151(C), pages 103-113.
    2. Zhao, Weixia & Li, Jiusheng & Li, Yanfeng & Yin, Jianfeng, 2012. "Effects of drip system uniformity on yield and quality of Chinese cabbage heads," Agricultural Water Management, Elsevier, vol. 110(C), pages 118-128.
    3. Guan, Hongjie & Li, Jiusheng & Li, Yanfeng, 2013. "Effects of drip system uniformity and irrigation amount on cotton yield and quality under arid conditions," Agricultural Water Management, Elsevier, vol. 124(C), pages 37-51.
    4. Li, Jiusheng, 1998. "Modeling crop yield as affected by uniformity of sprinkler irrigation system," Agricultural Water Management, Elsevier, vol. 38(2), pages 135-146, December.
    5. Tripler, Effi & Shani, Uri & Ben-Gal, Alon & Mualem, Yechezkel, 2012. "Apparent steady state conditions in high resolution weighing-drainage lysimeters containing date palms grown under different salinities," Agricultural Water Management, Elsevier, vol. 107(C), pages 66-73.
    6. Šimůnek, Jiří & Hopmans, Jan W., 2009. "Modeling compensated root water and nutrient uptake," Ecological Modelling, Elsevier, vol. 220(4), pages 505-521.
    7. Allen, Richard G. & Pereira, Luis S. & Howell, Terry A. & Jensen, Marvin E., 2011. "Evapotranspiration information reporting: I. Factors governing measurement accuracy," Agricultural Water Management, Elsevier, vol. 98(6), pages 899-920, April.
    8. Skaggs, T.H. & Suarez, D.L. & Goldberg, S. & Shouse, P.J., 2012. "Replicated lysimeter measurements of tracer transport in clayey soils: Effects of irrigation water salinity," Agricultural Water Management, Elsevier, vol. 110(C), pages 84-93.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vera-Repullo, J.A. & Ruiz-Peñalver, L. & Jiménez-Buendía, M. & Rosillo, J.J. & Molina-Martínez, J.M., 2015. "Software for the automatic control of irrigation using weighing-drainage lysimeters," Agricultural Water Management, Elsevier, vol. 151(C), pages 4-12.
    2. Li, Shengping & Tan, Deshui & Wu, Xueping & Degré, Aurore & Long, Huaiyu & Zhang, Shuxiang & Lu, Jinjing & Gao, Lili & Zheng, Fengjun & Liu, Xiaotong & Liang, Guopeng, 2021. "Negative pressure irrigation increases vegetable water productivity and nitrogen use efficiency by improving soil water and NO3–-N distributions," Agricultural Water Management, Elsevier, vol. 251(C).
    3. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    4. Zhou, Lifeng & He, Jianqiang & Qi, Zhijuan & Dyck, Miles & Zou, Yufeng & Zhang, Tibin & Feng, Hao, 2018. "Effects of lateral spacing for drip irrigation and mulching on the distributions of soil water and nitrate, maize yield, and water use efficiency," Agricultural Water Management, Elsevier, vol. 199(C), pages 190-200.
    5. Groenveld, Thomas & Argaman, Amir & Šimůnek, Jiří & Lazarovitch, Naftali, 2021. "Numerical modeling to optimize nitrogen fertigation with consideration of transient drought and nitrogen stress," Agricultural Water Management, Elsevier, vol. 254(C).
    6. Lin, Xiaomin & Wang, Zhen & Li, Jiusheng, 2021. "Identifying the factors dominating the spatial distribution of water and salt in soil and cotton yield under arid environments of drip irrigation with different lateral lengths," Agricultural Water Management, Elsevier, vol. 250(C).
    7. Ramos, Tiago B. & Liu, Meihan & Paredes, Paula & Shi, Haibin & Feng, Zhuangzhuang & Lei, Huimin & Pereira, Luis S., 2023. "Salts dynamics in maize irrigation in the Hetao plateau using static water table lysimeters and HYDRUS-1D with focus on the autumn leaching irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    8. Wang, Wenjuan & Xu, Ru & Wei, Rong & Wang, Wene & Hu, Xiaotao, 2023. "Effects of different pressures and laying lengths of micro-sprinkling hose irrigation on irrigation uniformity and yield of spring wheat," Agricultural Water Management, Elsevier, vol. 288(C).
    9. Jiménez-Buendía, M. & Ruiz-Peñalver, L. & Vera-Repullo, J.A. & Intrigliolo-Molina, D.S. & Molina-Martínez, J.M., 2015. "Development and assessment of a network of water meters and rain gauges for determining the water balance. New SCADA monitoring software," Agricultural Water Management, Elsevier, vol. 151(C), pages 93-102.
    10. Pereira, L.S. & Paredes, P. & Jovanovic, N., 2020. "Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach," Agricultural Water Management, Elsevier, vol. 241(C).
    11. Maroufpoor, Saman & Shiri, Jalal & Maroufpoor, Eisa, 2019. "Modeling the sprinkler water distribution uniformity by data-driven methods based on effective variables," Agricultural Water Management, Elsevier, vol. 215(C), pages 63-73.
    12. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    13. Escarabajal-Henarejos, D. & Fernández-Pacheco, D.G. & Molina-Martínez, J.M. & Martínez-Molina, L. & Ruiz-Canales, A., 2015. "Selection of device to determine temperature gradients for estimating evapotranspiration using energy balance method," Agricultural Water Management, Elsevier, vol. 151(C), pages 136-147.
    14. Phogat, V. & Skewes, M.A. & Cox, J.W. & Alam, J. & Grigson, G. & Šimůnek, J., 2013. "Evaluation of water movement and nitrate dynamics in a lysimeter planted with an orange tree," Agricultural Water Management, Elsevier, vol. 127(C), pages 74-84.
    15. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    16. Wang, Jianjun & Wang, Chuantao & Li, Hongchen & Liu, Yanfang & Li, Huijie & Ren, Ruiqi & Si, Bingcheng, 2023. "Rock water use by apple trees affected by physical properties of the underlying weathered rock," Agricultural Water Management, Elsevier, vol. 287(C).
    17. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    18. Shahadha, Saadi Sattar & Wendroth, Ole & Zhu, Junfeng & Walton, Jason, 2019. "Can measured soil hydraulic properties simulate field water dynamics and crop production?," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    19. Mubarak, Ibrahim & Mailhol, Jean Claude & Angulo-Jaramillo, Rafael & Bouarfa, Sami & Ruelle, Pierre, 2009. "Effect of temporal variability in soil hydraulic properties on simulated water transfer under high-frequency drip irrigation," Agricultural Water Management, Elsevier, vol. 96(11), pages 1547-1559, November.
    20. Escarabajal-Henarejos, D. & Molina-Martínez, J.M. & Fernández-Pacheco, D.G. & Cavas-Martínez, F. & García-Mateos, G., 2015. "Digital photography applied to irrigation management of Little Gem lettuce," Agricultural Water Management, Elsevier, vol. 151(C), pages 148-157.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:195:y:2018:i:c:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.