IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v157y2017icp230-240.html
   My bibliography  Save this article

Expert based model building to quantify risk factors in a combined aquaculture-agriculture system

Author

Listed:
  • Stewart-Koster, Ben
  • Dieu Anh, Nguyen
  • Burford, Michele A.
  • Condon, Jason
  • Qui, Nguyen Van
  • Hiep, Le Huu
  • Bay, Doan Van
  • Sammut, Jesmond

Abstract

In recent years, across tropical regions of the world, there has been an expansion of integrated farming systems that combine rice and shrimp production. While these systems were developed as a form of crop-rotation – growing rice in the wet season and shrimp in the dry season – some farmers grow both rice and brackish-water shrimp simultaneously during the wet season. Climatic variability has resulted in considerable crop losses in this system across many regions. Research has yet to identify the complete array of key risk factors, and their potential interactions, for integrated rice-shrimp farming. Consequently, different farming practices and environmental factors that may affect crop production need to be clarified to guide research efforts. We applied a staged, iterative process to develop a probabilistic Bayesian belief network based on expert knowledge that describes the relationships that contribute to the risk of failure of both crops in integrated rice-shrimp farming systems during the wet season. We applied the approach in the Southern Mekong Delta, Vietnam, in the context of a broader research program into the sustainability of the rice-shrimp farming system. The resulting network represents the experts' perceptions of the key risk factors to production and the interactions among them. While both farmers and extension officers contributed to the identification of the processes included in the network, the farmers alone provided estimates of the probability of the relationships among them. The network identified the challenges to minimise the risk of failure for both crops, and the steps farmers can take to mitigate some of them. Overall, farmers perceived they have a better chance to minimise risk of failure for shrimp rather than rice crops, and limited opportunities appear to exist for successful production of both. By engaging the farmers in this process of model development, we were able to identify additional research questions for the broader research team and to identify simple steps the farmers could take to reduce the risk of crop failure. Integrating additional empirical data into this network, as it becomes available, will help identify clear opportunities for improvements in farming practices which should reduce the risk of crop failure into the future.

Suggested Citation

  • Stewart-Koster, Ben & Dieu Anh, Nguyen & Burford, Michele A. & Condon, Jason & Qui, Nguyen Van & Hiep, Le Huu & Bay, Doan Van & Sammut, Jesmond, 2017. "Expert based model building to quantify risk factors in a combined aquaculture-agriculture system," Agricultural Systems, Elsevier, vol. 157(C), pages 230-240.
  • Handle: RePEc:eee:agisys:v:157:y:2017:i:c:p:230-240
    DOI: 10.1016/j.agsy.2017.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X16309040
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2017.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kristjanson, Patti & Reid, Robin S. & Dickson, Nancy M. & Grace, Delia & Clark, William C. & Romney, Dannie & Puskur, Ranjitha & MacMillan, Susan, 2009. "Linking International Agricultural Research Knowledge with Action for Sustainable Development," Scholarly Articles 9774655, Harvard Kennedy School of Government.
    2. Everingham, Y. L. & Muchow, R. C. & Stone, R. C. & Inman-Bamber, N. G. & Singels, A. & Bezuidenhout, C. N., 2002. "Enhanced risk management and decision-making capability across the sugarcane industry value chain based on seasonal climate forecasts," Agricultural Systems, Elsevier, vol. 74(3), pages 459-477, December.
    3. Johnson, Sandra & Mengersen, Kerrie & de Waal, Alta & Marnewick, Kelly & Cilliers, Deon & Houser, Ann Marie & Boast, Lorraine, 2010. "Modelling cheetah relocation success in southern Africa using an Iterative Bayesian Network Development Cycle," Ecological Modelling, Elsevier, vol. 221(4), pages 641-651.
    4. Joffre, Olivier M. & Bosma, Roel H. & Ligtenberg, Arend & Tri, Van Pham Dang & Ha, Tran Thi Phung & Bregt, Arnold K., 2015. "Combining participatory approaches and an agent-based model for better planning shrimp aquaculture," Agricultural Systems, Elsevier, vol. 141(C), pages 149-159.
    5. Nazmul Huq & Jean Huge & Emmanuel Boon & Animesh A.K. Gain, 2015. "Climate change impacts in agricultural communities in rural areas of coastal bangladesh: A tale of many stories," ULB Institutional Repository 2013/217954, ULB -- Universite Libre de Bruxelles.
    6. Cain, J. D. & Jinapala, K. & Makin, I. W. & Somaratna, P. G. & Ariyaratna, B. R. & Perera, L. R., 2003. "Participatory decision support for agricultural management. A case study from Sri Lanka," Agricultural Systems, Elsevier, vol. 76(2), pages 457-482, May.
    7. Nazmul Huq & Jean Hugé & Emmanuel Boon & Animesh K. Gain, 2015. "Climate Change Impacts in Agricultural Communities in Rural Areas of Coastal Bangladesh: A Tale of Many Stories," Sustainability, MDPI, vol. 7(7), pages 1-24, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pham, Hung Vuong & Sperotto, Anna & Furlan, Elisa & Torresan, Silvia & Marcomini, Antonio & Critto, Andrea, 2021. "Integrating Bayesian Networks into ecosystem services assessment to support water management at the river basin scale," Ecosystem Services, Elsevier, vol. 50(C).
    2. Moglia, Magnus & Alexander, Kim S. & Thephavanh, Manithaythip & Thammavong, Phomma & Sodahak, Viengkham & Khounsy, Bountom & Vorlasan, Sysavanh & Larson, Silva & Connell, John & Case, Peter, 2018. "A Bayesian network model to explore practice change by smallholder rice farmers in Lao PDR," Agricultural Systems, Elsevier, vol. 164(C), pages 84-94.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md. Zonayet & Alok Kumar Paul & Md. Faisal-E-Alam & Khalid Syfullah & Rui Alexandre Castanho & Daniel Meyer, 2023. "Impact of Biochar as a Soil Conditioner to Improve the Soil Properties of Saline Soil and Productivity of Tomato," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    2. Nazmul Huq & Antje Bruns & Lars Ribbe & Saleemul Huq, 2017. "Mainstreaming Ecosystem Services Based Climate Change Adaptation (EbA) in Bangladesh: Status, Challenges and Opportunities," Sustainability, MDPI, vol. 9(6), pages 1-20, June.
    3. Khatun Mst Asma & Koji Kotani, 2019. "Salinity and water-related disease risk in coastal Bangladesh," Working Papers SDES-2019-9, Kochi University of Technology, School of Economics and Management, revised Nov 2019.
    4. Adnan, Mohammed Sarfaraz Gani & Abdullah, Abu Yousuf Md & Dewan, Ashraf & Hall, Jim W., 2020. "The effects of changing land use and flood hazard on poverty in coastal Bangladesh," Land Use Policy, Elsevier, vol. 99(C).
    5. Sabikun Nahar Himi & Mohammad Amirul Islam1 & Shankar Majumder, 2020. "Determinants Of Food Insecurity Status Of Fisheries Community In Coastal Regions Of Bangladesh," Bangladesh Journal of Agricultural Economics, Bangladesh Agricultural University, vol. 41(2), December.
    6. Gemma Hayward & Sonja Ayeb-Karlsson, 2021. "‘Seeing with Empty Eyes’: a systems approach to understand climate change and mental health in Bangladesh," Climatic Change, Springer, vol. 165(1), pages 1-30, March.
    7. Sejabaledi A. Rankoana, 2016. "Perceptions of Climate Change and the Potential for Adaptation in a Rural Community in Limpopo Province, South Africa," Sustainability, MDPI, vol. 8(8), pages 1-10, August.
    8. Shaikh Moniruzzaman, 2019. "Crop Diversification As Climate Change Adaptation: How Do Bangladeshi Farmers Perform?," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 1-22, May.
    9. Risper Nyairo & Takashi Machimura & Takanori Matsui, 2020. "A Combined Analysis of Sociological and Farm Management Factors Affecting Household Livelihood Vulnerability to Climate Change in Rural Burundi," Sustainability, MDPI, vol. 12(10), pages 1-20, May.
    10. Gyanendra Karki & Balram Bhatta & Naba R Devkota & Ram P Acharya & Ripu M Kunwar, 2021. "Climate Change Adaptation (CCA) Interventions and Indicators in Nepal: Implications for Sustainable Adaptation," Sustainability, MDPI, vol. 13(23), pages 1-17, November.
    11. Murad, Khandakar Faisal Ibn & Hossain, Akbar & Fakir, Oli Ahmed & Biswas, Sujit Kumar & Sarker, Khokan Kumer & Rannu, Rahena Parvin & Timsina, Jagadish, 2018. "Conjunctive use of saline and fresh water increases the productivity of maize in saline coastal region of Bangladesh," Agricultural Water Management, Elsevier, vol. 204(C), pages 262-270.
    12. Sylvester Mpandeli & Luxon Nhamo & Sithabile Hlahla & Dhesigen Naidoo & Stanley Liphadzi & Albert Thembinkosi Modi & Tafadzwanashe Mabhaudhi, 2020. "Migration under Climate Change in Southern Africa: A Nexus Planning Perspective," Sustainability, MDPI, vol. 12(11), pages 1-14, June.
    13. Mustafa Hakki Aydogdu & Kasim Yenigün, 2016. "Farmers’ Risk Perception towards Climate Change: A Case of the GAP-Şanlıurfa Region, Turkey," Sustainability, MDPI, vol. 8(8), pages 1-12, August.
    14. Shaima Chowdhury Sharna & Asif Reza Anik & Sanzidur Rahman & Md. Abdus Salam, 2022. "Impact of Social, Institutional and Environmental Factors on the Adoption of Sustainable Soil Management Practices: An Empirical Analysis from Bangladesh," Land, MDPI, vol. 11(12), pages 1-20, December.
    15. Liedloff, Adam C. & Smith, Carl S., 2010. "Predicting a ‘tree change’ in Australia's tropical savannas: Combining different types of models to understand complex ecosystem behaviour," Ecological Modelling, Elsevier, vol. 221(21), pages 2565-2575.
    16. Md Kamrul Hasan & Lalit Kumar, 2020. "Perceived farm-level climatic impacts on coastal agricultural productivity in Bangladesh," Climatic Change, Springer, vol. 161(4), pages 617-636, August.
    17. Muhammad Ziaul Hoque & Shenghui Cui & Lilai Xu & Imranul Islam & Jianxiong Tang & Shengping Ding, 2019. "Assessing Agricultural Livelihood Vulnerability to Climate Change in Coastal Bangladesh," IJERPH, MDPI, vol. 16(22), pages 1-21, November.
    18. Md. Shafiqul Islam & Shimul Roy & Rezuana Afrin & Md. Younus Mia, 2020. "Influence of climate-induced disasters and climatic variability on cropping pattern and crop production in Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6709-6726, October.
    19. Md Lamiur Raihan & Kenichiro Onitsuka & Mrittika Basu & Natsuki Shimizu & Satoshi Hoshino, 2020. "Rapid Emergence and Increasing Risks of Hailstorms: A Potential Threat to Sustainable Agriculture in Northern Bangladesh," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
    20. Regasa Dereje Tesema & Akirso Nega Abera, 2019. "Determinants of Climate Change Mitigation and Adaptation Strategies: An Application of Protection Motivation Theory in Konta District, South Western Ethiopia," European Review of Applied Sociology, Sciendo, vol. 12(19), pages 49-73, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:157:y:2017:i:c:p:230-240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.