IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v141y2015icp24-35.html
   My bibliography  Save this article

Analysing yield trends in the South African sugar industry

Author

Listed:
  • Jones, M.R.
  • Singels, A.

Abstract

A perception exists in the South African (SA) sugar industry that sugarcane yields are declining. The objective of this study was to quantify yield decline in the SA sugar industry to inform future research and extension efforts to decrease yield gaps. Regional trends in cane yield were calculated from mill-level cane delivery and harvest area data. Benchmark simulated yields for each region were estimated by the Canesim Crop Forecasting System, using inferred harvest age and observed weather data. Actual yields were annualised to remove harvest age effects and then expressed as fractions of corresponding simulated yields, in order to remove effects of inter-seasonal variations in weather. Trends in this yield ratio (YR) were calculated for several regions and grower categories. Yield decline was defined as a decreasing trend in YR over time (1981–2010).

Suggested Citation

  • Jones, M.R. & Singels, A., 2015. "Analysing yield trends in the South African sugar industry," Agricultural Systems, Elsevier, vol. 141(C), pages 24-35.
  • Handle: RePEc:eee:agisys:v:141:y:2015:i:c:p:24-35
    DOI: 10.1016/j.agsy.2015.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X15300275
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2015.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. MacNicol, R. & Ortmann, Gerald F. & Ferrer, Stuart R.D., 2007. "Perceptions of key business and financial risk by large-scale sugarcane farmers in KwaZulu-Natal in a dynamic socio-political environment," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 46(3), pages 1-20, September.
    2. Bouman, B.A.M. & Kropff, M.J. & Wopereis, M.C.S. & ten Berge, H.F.M. & van Laar, H.H., 2001. "ORYZA2000: modeling lowland rice," IRRI Books, International Rice Research Institute (IRRI), number 281825, January.
    3. Bezuidenhout, C.N. & Singels, A., 2007. "Operational forecasting of South African sugarcane production: Part 1 - System description," Agricultural Systems, Elsevier, vol. 92(1-3), pages 23-38, January.
    4. Bezuidenhout, C.N. & Singels, A., 2007. "Operational forecasting of South African sugarcane production: Part 2 - System evaluation," Agricultural Systems, Elsevier, vol. 92(1-3), pages 39-51, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pagani, Valentina & Stella, Tommaso & Guarneri, Tommaso & Finotto, Giacomo & van den Berg, Maurits & Marin, Fabio Ricardo & Acutis, Marco & Confalonieri, Roberto, 2017. "Forecasting sugarcane yields using agro-climatic indicators and Canegro model: A case study in the main production region in Brazil," Agricultural Systems, Elsevier, vol. 154(C), pages 45-52.
    2. van der Velde, Marijn & Biavetti, Irene & El-Aydam, Mohamed & Niemeyer, Stefan & Santini, Fabien & van den Berg, Maurits, 2019. "Use and relevance of European Union crop monitoring and yield forecasts," Agricultural Systems, Elsevier, vol. 168(C), pages 224-230.
    3. Pagani, Valentina & Guarneri, Tommaso & Busetto, Lorenzo & Ranghetti, Luigi & Boschetti, Mirco & Movedi, Ermes & Campos-Taberner, Manuel & Garcia-Haro, Francisco Javier & Katsantonis, Dimitrios & Stav, 2019. "A high-resolution, integrated system for rice yield forecasting at district level," Agricultural Systems, Elsevier, vol. 168(C), pages 181-190.
    4. Le Gal, P.-Y. & Lyne, P.W.L. & Meyer, E. & Soler, L.-G., 2008. "Impact of sugarcane supply scheduling on mill sugar production: A South African case study," Agricultural Systems, Elsevier, vol. 96(1-3), pages 64-74, March.
    5. Bocca, Felipe Ferreira & Rodrigues, Luiz Henrique Antunes & Arraes, Nilson Antonio Modesto, 2015. "When do I want to know and why? Different demands on sugarcane yield predictions," Agricultural Systems, Elsevier, vol. 135(C), pages 48-56.
    6. Dilshad Ahmad & Muhammad Afzal & Abdur Rauf, 2019. "Analysis of wheat farmers’ risk perceptions and attitudes: evidence from Punjab, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(3), pages 845-861, February.
    7. Bouman, B.A.M. & Peng, S. & Castaneda, A.R. & Visperas, R.M., 2005. "Yield and water use of irrigated tropical aerobic rice systems," Agricultural Water Management, Elsevier, vol. 74(2), pages 87-105, June.
    8. Boling, A.A. & Tuong, T.P. & van Keulen, H. & Bouman, B.A.M. & Suganda, H. & Spiertz, J.H.J., 2010. "Yield gap of rainfed rice in farmers' fields in Central Java, Indonesia," Agricultural Systems, Elsevier, vol. 103(5), pages 307-315, June.
    9. Gao, Ya & Sun, Chen & Ramos, Tiago B. & Huo, Zailin & Huang, Guanhua & Xu, Xu, 2023. "Modeling nitrogen dynamics and biomass production in rice paddy fields of cold regions with the ORYZA-N model," Ecological Modelling, Elsevier, vol. 475(C).
    10. Timsina, J. & Buresh, R.J. & Dobermann, A. & Dixon, J. (ed.), 2011. "Rice-maize systems in Asia: current situation and potential," IRRI Books, International Rice Research Institute (IRRI), number 164490, January.
    11. Belder, P. & Bouman, B. A.M. & Spiertz, J.H.J., 2007. "Exploring options for water savings in lowland rice using a modelling approach," Agricultural Systems, Elsevier, vol. 92(1-3), pages 91-114, January.
    12. Timsina, Jagadish & Dutta, Sudarshan & Devkota, Krishna Prasad & Chakraborty, Somsubhra & Neupane, Ram Krishna & Bishta, Sudarshan & Amgain, Lal Prasad & Singh, Vinod K. & Islam, Saiful & Majumdar, Ka, 2021. "Improved nutrient management in cereals using Nutrient Expert and machine learning tools: Productivity, profitability and nutrient use efficiency," Agricultural Systems, Elsevier, vol. 192(C).
    13. Miltiadis Iatrou & Christos Karydas & George Iatrou & Ioannis Pitsiorlas & Vassilis Aschonitis & Iason Raptis & Stelios Mpetas & Kostas Kravvas & Spiros Mourelatos, 2021. "Topdressing Nitrogen Demand Prediction in Rice Crop Using Machine Learning Systems," Agriculture, MDPI, vol. 11(4), pages 1-17, April.
    14. Sepahvand, Mohammad H, 2019. "Agricultural productivity in Burkina Faso: The role of gender andrisk attitudes," Working Paper Series 2019:3, Uppsala University, Department of Economics.
    15. Mohammad Sepahvand, 2022. "Agricultural Productivity in Burkina Faso: The Role of Gender and Risk Attitudes," Working Papers ECARES 2022-32, ULB -- Universite Libre de Bruxelles.
    16. Li, Yan & Zhou, Qingguo & Zhou, Jian & Zhang, Gaofeng & Chen, Chong & Wang, Jing, 2014. "Assimilating remote sensing information into a coupled hydrology-crop growth model to estimate regional maize yield in arid regions," Ecological Modelling, Elsevier, vol. 291(C), pages 15-27.
    17. Ding, Yimin & Wang, Weiguang & Zhuang, Qianlai & Luo, Yufeng, 2020. "Adaptation of paddy rice in China to climate change: The effects of shifting sowing date on yield and irrigation water requirement," Agricultural Water Management, Elsevier, vol. 228(C).
    18. Confidence Duku & Adam H. Sparks & Sander J. Zwart, 2016. "Spatial modelling of rice yield losses in Tanzania due to bacterial leaf blight and leaf blast in a changing climate," Climatic Change, Springer, vol. 135(3), pages 569-583, April.
    19. Waweru, Caroline Waithira & Nyikal, Rose & Busienei, John R, 2017. "An Analysis Of Risk Attitudes And Risk Management Strategies Among Dairy Farmers In Murang’A County, Kenya," Dissertations and Theses 271063, University of Nairobi, Department of Agricultural Economics.
    20. Hayashi, Keiichi & Llorca, Lizzida & Rustini, Sri & Setyanto, Prihasto & Zaini, Zulkifli, 2018. "Reducing vulnerability of rainfed agriculture through seasonal climate predictions: A case study on the rainfed rice production in Southeast Asia," Agricultural Systems, Elsevier, vol. 162(C), pages 66-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:141:y:2015:i:c:p:24-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.