IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v205y2023ics0308521x22002189.html
   My bibliography  Save this article

Studying beef production evolution to plan for ecological intensification of grazing ecosystems

Author

Listed:
  • Caram, Nicolas
  • Soca, Pablo
  • Sollenberger, Lynn E.
  • Baethgen, Walter
  • Wallau, Marcelo O.
  • Mailhos, María E.

Abstract

A challenge facing the livestock sector is improving beef production while mitigating negative environmental impacts. Analyzing its past productive and environmental performance may elucidate strategies for improving efficiency of grassland-based systems and identify future research and public policy priorities.

Suggested Citation

  • Caram, Nicolas & Soca, Pablo & Sollenberger, Lynn E. & Baethgen, Walter & Wallau, Marcelo O. & Mailhos, María E., 2023. "Studying beef production evolution to plan for ecological intensification of grazing ecosystems," Agricultural Systems, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:agisys:v:205:y:2023:i:c:s0308521x22002189
    DOI: 10.1016/j.agsy.2022.103582
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X22002189
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2022.103582?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martha, Geraldo B. & Alves, Eliseu & Contini, Elisio, 2012. "Land-saving approaches and beef production growth in Brazil," Agricultural Systems, Elsevier, vol. 110(C), pages 173-177.
    2. Nin Pratt, Alejandro & Freiría, Heber & Muñoz, Gonzalo, 2019. "Productivity and Efficiency in Grassland-based Livestock Production in Latin America: The Cases of Uruguay and Paraguay," IDB Publications (Working Papers) 9868, Inter-American Development Bank.
    3. Ruggia, A. & Dogliotti, S. & Aguerre, V. & Albicette, M.M. & Albin, A. & Blumetto, O. & Cardozo, G. & Leoni, C. & Quintans, G. & Scarlato, S. & Tittonell, P. & Rossing, W.A.H., 2021. "The application of ecologically intensive principles to the systemic redesign of livestock farms on native grasslands: A case of co-innovation in Rocha, Uruguay," Agricultural Systems, Elsevier, vol. 191(C).
    4. Lovell S. Jarvis, 1981. "Predicting the Diffusion of Improved Pastures in Uruguay," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 63(3), pages 495-502.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin T. Phalan, 2018. "What Have We Learned from the Land Sparing-sharing Model?," Sustainability, MDPI, vol. 10(6), pages 1-24, May.
    2. Marie-Estelle Binet & Lionel Richefort, 2011. "Diffusion of irrigation technologies: the role of mimicking behaviour and public incentives," Applied Economics Letters, Taylor & Francis Journals, vol. 18(1), pages 43-48.
    3. Moojen, Fernanda Gomes & Ryschawy, Julie & dos Santos, Davi Teixeira & Barth Neto, Armindo & Vieira, Paulo Cardozo & Portella, Elisa & de Faccio Carvalho, Paulo César, 2022. "The farm coaching experience to support the transition to integrated crop–livestock systems: From gaming to action," Agricultural Systems, Elsevier, vol. 196(C).
    4. Zanetti De Lima, C. & Gurgel, A. & Teixeira, E.C., 2018. "Synergies of low-carbon technologies and land-sparing in Brazilian regions," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277091, International Association of Agricultural Economists.
    5. H. G. P. Jansen, 1992. "Inter‐Regional Variation In The Speed Of Adoption Of Modern Cereal Cultivars In India," Journal of Agricultural Economics, Wiley Blackwell, vol. 43(1), pages 88-95, January.
    6. Zhang, Congying & Xiang, Jingru & Chang, Qian, 2023. "Does Informatization Cause the Relative Substitution Bias of Agricultural Machinery Inputs for Labor Inputs? Evidence from Apple Farmers in China," Research on World Agricultural Economy, Nan Yang Academy of Sciences Pte Ltd (NASS), vol. 4(3), September.
    7. Neupane, Ramji P. & Sharma, Khem R. & Thapa, Gopal B., 2002. "Adoption of agroforestry in the hills of Nepal: a logistic regression analysis," Agricultural Systems, Elsevier, vol. 72(3), pages 177-196, June.
    8. De Oliveira Silva, Rafael & Barioni, Luis Gustavo & Queiroz Pellegrino, Giampaolo & Moran, Dominic, 2018. "The role of agricultural intensification in Brazil's Nationally Determined Contribution on emissions mitigation," Agricultural Systems, Elsevier, vol. 161(C), pages 102-112.
    9. Jonathan Gonçalves Da Silva & Joaquim Bento De Souza Ferreira Filho, 2016. "Climate Change, Agriculture And Livestock Intensification In Brazil: The Borlaug Hypothesis," Anais do XLIII Encontro Nacional de Economia [Proceedings of the 43rd Brazilian Economics Meeting] 184, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    10. Söder, Mareike, 2014. "EU biofuel policies in practice: A carbon map for the Brazilian Cerrado," Kiel Working Papers 1966, Kiel Institute for the World Economy (IfW Kiel).
    11. Andrew P. Barnes & Amanda Lucas & Gregory Maio, 2016. "Quantifying ambivalence towards sustainable intensification: an exploration of the UK public’s values," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(3), pages 609-619, June.
    12. Blackman, Allen, 1999. "The Economics of Technology Diffusion: Implications for Climate Policy in Developing Countries," Discussion Papers 10574, Resources for the Future.
    13. María Fernanda de Santiago & Margenny Barrios & Alejandro D’Anatro & Luis Fernando García & Ary Mailhos & Gabriel Pompozzi & Sofía Rehermann & Miguel Simó & Giancarlo Tesitore & Franco Teixeira de Mel, 2022. "From Theory to Practice: Can LEAP/FAO Biodiversity Assessment Guidelines Be a Useful Tool for Knowing the Environmental Status of Livestock Systems?," Sustainability, MDPI, vol. 14(23), pages 1-34, December.
    14. Lopez Barrera, Emiliano & Hertel, Thomas, 2021. "Global food waste across the income spectrum: Implications for food prices, production and resource use," Food Policy, Elsevier, vol. 98(C).
    15. de Oliveira Silva, Rafael & Barioni, Luis G. & Albertini, Tiago Zanett & Eory, Vera & Topp, Cairistiona F.E. & Fernandes, Fernando A. & Moran, Dominic, 2015. "Developing a nationally appropriate mitigation measure from the greenhouse gas GHG abatement potential from livestock production in the Brazilian Cerrado," Agricultural Systems, Elsevier, vol. 140(C), pages 48-55.
    16. Thomas W. Hertel & Carlos E. Ludena & Alla A. Golub, 2009. "Economic Growth, Technological Change, and the Patterns of Food and Agricultural Trade in Asia," Palgrave Macmillan Books, in: Fan Zhai (ed.), From Growth to Convergence, chapter 6, pages 175-210, Palgrave Macmillan.
    17. Anchal Arora & Sangeeta Bansal, "undated". "Diffusion of Bt Cotton in India: Impact of Seed Prices and Technological Development," Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi Discussion Papers 11-01, Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi, India.
    18. Trajtenberg, Manuel & Yitzhaki, Shlomo, 1989. "The Diffusion of Innovations: A Methodological Reappraisal," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(1), pages 35-47, January.
    19. Benitez-Altuna, Francisco & Trienekens, Jacques & Materia, Valentina C. & Bijman, Jos, 2021. "Factors affecting the adoption of ecological intensification practices: A case study in vegetable production in Chile," Agricultural Systems, Elsevier, vol. 194(C).
    20. Brian J. Revell, 2015. "One Man's Meat … 2050? Ruminations on Future Meat Demand in the Context of Global Warming," Journal of Agricultural Economics, Wiley Blackwell, vol. 66(3), pages 573-614, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:205:y:2023:i:c:s0308521x22002189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.