IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v133y2015icp63-72.html
   My bibliography  Save this article

Whole-farm economic, risk and resource-use trade-offs associated with integrating forages into crop–livestock systems in western China

Author

Listed:
  • Komarek, Adam M.
  • Bell, Lindsay W.
  • Whish, Jeremy P.M.
  • Robertson, Michael J.
  • Bellotti, William D.

Abstract

Substantial initiatives are occurring in developing countries to integrate forage crops into crop–livestock systems to improve farmer livelihoods and reduce soil erosion. In particular, government authorities in western China focus on improving farmer livestock profits through greater forage crop production. We examined the whole-farm profit, downside risk, labour-use efficiency and feed balance effects of forage crop intensification on two simulated crop–livestock farm types in western China. Our methodology combined crop and livestock simulation modelling with whole-farm stochastic budgeting to capture both price and climate variability. We modelled the whole-farm effects of (1) introducing either forage vetch (Vicia sativa), forage oats (Avena sativa), or grain soybean (Glycine max) into current wheat (Triticum aestivum)-maize (Zea mays) systems and (2) replacing maize in current wheat-maize systems with either forage wheat, forage maize, or forage soybean. System intensification through incorporating a forage crop into current grain-cropping systems can increase average simulated profits without increasing downside risk on the simulated farms. As opposed to adding a forage crop into current grain-cropping systems, replacing a grain crop with a forage crop in current grain-cropping systems had a negative effect on profits, downside risk, and labour-use efficiency. Trade-offs existed between labour-use efficiency and profit as forage intensification increased labour demands. These effects were context specific, with greater positive profit effects of forage intensification for the higher-rainfall farm type. Overall, forage intensification in these systems benefited the households, but adoption will depend on household preferences and local agro-ecological and market factors. We demonstrated the importance of exploring proposed intensification options across different locations to capture impacts across diverse contexts. Providing these context-specific insights and exploring trade-offs within systems can help better understand livelihood improvement pathways. In locations with strong competing uses for labour, developing labour-saving practices appears critical.

Suggested Citation

  • Komarek, Adam M. & Bell, Lindsay W. & Whish, Jeremy P.M. & Robertson, Michael J. & Bellotti, William D., 2015. "Whole-farm economic, risk and resource-use trade-offs associated with integrating forages into crop–livestock systems in western China," Agricultural Systems, Elsevier, vol. 133(C), pages 63-72.
  • Handle: RePEc:eee:agisys:v:133:y:2015:i:c:p:63-72
    DOI: 10.1016/j.agsy.2014.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X14001401
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2014.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David R. Lee, 2005. "Agricultural Sustainability and Technology Adoption: Issues and Policies for Developing Countries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(5), pages 1325-1334.
    2. Hazell, Peter & Poulton, Colin & Wiggins, Steve & Dorward, Andrew, 2010. "The Future of Small Farms: Trajectories and Policy Priorities," World Development, Elsevier, vol. 38(10), pages 1349-1361, October.
    3. J. Brian Hardaker & James W. Richardson & Gudbrand Lien & Keith D. Schumann, 2004. "Stochastic efficiency analysis with risk aversion bounds: a simplified approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 48(2), pages 253-270, June.
    4. Fariña, S.R. & Alford, A. & Garcia, S.C. & Fulkerson, W.J., 2013. "An integrated assessment of business risk for pasture-based dairy farm systems intensification," Agricultural Systems, Elsevier, vol. 115(C), pages 10-20.
    5. Komarek, Adam M. & Waldron, Scott A. & Brown, Colin G., 2012. "An exploration of livestock-development policies in western China," Food Policy, Elsevier, vol. 37(1), pages 12-20.
    6. Lien, Gudbrand & Brian Hardaker, J. & Flaten, Ola, 2007. "Risk and economic sustainability of crop farming systems," Agricultural Systems, Elsevier, vol. 94(2), pages 541-552, May.
    7. Tanure, Soraya & Nabinger, Carlos & Becker, João Luiz, 2013. "Bioeconomic model of decision support system for farm management. Part I: Systemic conceptual modeling," Agricultural Systems, Elsevier, vol. 115(C), pages 104-116.
    8. Binswanger, Hans P, 1981. "Attitudes toward Risk: Theoretical Implications of an Experiment in Rural India," Economic Journal, Royal Economic Society, vol. 91(364), pages 867-890, December.
    9. Komarek, Adam M. & McDonald, Cam K. & Bell, Lindsay W. & Whish, Jeremy P.M. & Robertson, Michael J. & MacLeod, Neil D. & Bellotti, William D., 2012. "Whole-farm effects of livestock intensification in smallholder systems in Gansu, China," Agricultural Systems, Elsevier, vol. 109(C), pages 16-24.
    10. Finlayson, John & Real, Daniel & Nordblom, Tom & Revell, Clinton & Ewing, Mike & Kingwell, Ross, 2012. "Farm level assessments of a novel drought tolerant forage: Tedera (Bituminaria bituminosa C.H. Stirt var. albomarginata)," Agricultural Systems, Elsevier, vol. 112(C), pages 38-47.
    11. Finlayson, John D. & Real, Daniel & Nordblom, Thomas L. & Revell, Clinton & Ewing, Michael A. & Kingwell, Ross S., 2012. "A farm level assessment of a novel drought tolerant forage:Tedera (Bituminaria bituminosa C.H.Stirt var. albomarginata)," 2012 Conference (56th), February 7-10, 2012, Fremantle, Australia 124297, Australian Agricultural and Resource Economics Society.
    12. Lien, Gudbrand, 2003. "Assisting whole-farm decision-making through stochastic budgeting," Agricultural Systems, Elsevier, vol. 76(2), pages 399-413, May.
    13. Brown, Colin & Waldron, Scott, 2013. "Agrarian change, agricultural modernization and the modelling of agricultural households in Tibet," Agricultural Systems, Elsevier, vol. 115(C), pages 83-94.
    14. Lien, Gudbrand & Hardaker, J. Brian & Asseldonk, Marcel A.P.M. van & Richardson, James W., 2009. "Risk programming and sparse data: how to get more reliable results," Agricultural Systems, Elsevier, vol. 101(1-2), pages 42-48, June.
    15. Tittonell, P. & van Wijk, M.T. & Herrero, M. & Rufino, M.C. & de Ridder, N. & Giller, K.E., 2009. "Beyond resource constraints - Exploring the biophysical feasibility of options for the intensification of smallholder crop-livestock systems in Vihiga district, Kenya," Agricultural Systems, Elsevier, vol. 101(1-2), pages 1-19, June.
    16. Giller, K.E. & Tittonell, P. & Rufino, M.C. & van Wijk, M.T. & Zingore, S. & Mapfumo, P. & Adjei-Nsiah, S. & Herrero, M. & Chikowo, R. & Corbeels, M. & Rowe, E.C. & Baijukya, F. & Mwijage, A. & Smith,, 2011. "Communicating complexity: Integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development," Agricultural Systems, Elsevier, vol. 104(2), pages 191-203, February.
    17. Gandorfer, Markus & Pannell, David & Meyer-Aurich, Andreas, 2011. "Analyzing the effects of risk and uncertainty on optimal tillage and nitrogen fertilizer intensity for field crops in Germany," Agricultural Systems, Elsevier, vol. 104(8), pages 615-622, October.
    18. Lisson, Shaun & MacLeod, Neil & McDonald, Cam & Corfield, Jeff & Pengelly, Bruce & Wirajaswadi, Lalu & Rahman, Rahmat & Bahar, Syamsu & Padjung, Rusnadi & Razak, Nasruddin & Puspadi, Ketut & Dahlanudd, 2010. "A participatory, farming systems approach to improving Bali cattle production in the smallholder crop-livestock systems of Eastern Indonesia," Agricultural Systems, Elsevier, vol. 103(7), pages 486-497, September.
    19. Qu, Futian & Kuyvenhoven, Arie & Shi, Xiaoping & Heerink, Nico, 2011. "Sustainable natural resource use in rural China: Recent trends and policies," China Economic Review, Elsevier, vol. 22(4), pages 444-460.
    20. Affholder, François & Jourdain, Damien & Quang, Dang Dinh & Tuong, To Phuc & Morize, Marion & Ricome, Aymeric, 2010. "Constraints to farmers' adoption of direct-seeding mulch-based cropping systems: A farm scale modeling approach applied to the mountainous slopes of Vietnam," Agricultural Systems, Elsevier, vol. 103(1), pages 51-62, January.
    21. Tittonell, P. & van Wijk, M.T. & Rufino, M.C. & Vrugt, J.A. & Giller, K.E., 2007. "Analysing trade-offs in resource and labour allocation by smallholder farmers using inverse modelling techniques: A case-study from Kakamega district, western Kenya," Agricultural Systems, Elsevier, vol. 95(1-3), pages 76-95, December.
    22. Devendra, C. & Sevilla, C. C., 2002. "Availability and use of feed resources in crop-animal systems in Asia," Agricultural Systems, Elsevier, vol. 71(1-2), pages 59-73.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Komarek, Adam M. & Abdul Rahman, Nurudeen & Bandyopadhyay, Arkadeep & Kizito, Fred & Koo, Jawoo & Addah, Weseh, 2021. "Trade-offs and synergies associated with maize leaf stripping within crop-livestock systems in northern Ghana," Agricultural Systems, Elsevier, vol. 193(C).
    2. Lai, Xingfa & Yang, Xianlong & Wang, Zikui & Shen, Yuying & Ma, Longshuai, 2022. "Productivity and water use in forage-winter wheat cropping systems across variable precipitation gradients on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 259(C).
    3. Adam M. Komarek, 2018. "Conservation agriculture in western China increases productivity and profits without decreasing resilience," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(5), pages 1251-1262, October.
    4. Kotir, Julius H. & Bell, Lindsay W. & Kirkegaard, John A. & Whish, Jeremy & Aikins, Kojo Atta, 2022. "Labour demand – The forgotten input influencing the execution and adoptability of alternative cropping systems in Eastern Australia," Agricultural Systems, Elsevier, vol. 203(C).
    5. Ditzler, Lenora & Komarek, Adam M. & Chiang, Tsai-Wei & Alvarez, Stéphanie & Chatterjee, Shantonu Abe & Timler, Carl & Raneri, Jessica E. & Carmona, Natalia Estrada & Kennedy, Gina & Groot, Jeroen C.J, 2019. "A model to examine farm household trade-offs and synergies with an application to smallholders in Vietnam," Agricultural Systems, Elsevier, vol. 173(C), pages 49-63.
    6. Thornton, Philip K. & Whitbread, Anthony & Baedeker, Tobias & Cairns, Jill & Claessens, Lieven & Baethgen, Walter & Bunn, Christian & Friedmann, Michael & Giller, Ken E. & Herrero, Mario & Howden, Mar, 2018. "A framework for priority-setting in climate smart agriculture research," Agricultural Systems, Elsevier, vol. 167(C), pages 161-175.
    7. Monjardino, M. & Philp, J.N.M. & Kuehne, G. & Phimphachanhvongsod, V. & Sihathep, V. & Denton, M.D., 2020. "Quantifying the value of adopting a post-rice legume crop to intensify mixed smallholder farms in Southeast Asia," Agricultural Systems, Elsevier, vol. 177(C).
    8. Luz Maria Castro & Fabian Härtl & Santiago Ochoa & Baltazar Calvas & Leonardo Izquierdo & Thomas Knoke, 2018. "Integrated bio-economic models as tools to support land-use decision making: a review of potential and limitations," Journal of Bioeconomics, Springer, vol. 20(2), pages 183-211, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Komarek, Adam M. & McDonald, Cam K. & Bell, Lindsay W. & Whish, Jeremy P.M. & Robertson, Michael J. & MacLeod, Neil D. & Bellotti, William D., 2012. "Whole-farm effects of livestock intensification in smallholder systems in Gansu, China," Agricultural Systems, Elsevier, vol. 109(C), pages 16-24.
    2. Le Gal, P.-Y. & Dugué, P. & Faure, G. & Novak, S., 2011. "How does research address the design of innovative agricultural production systems at the farm level? A review," Agricultural Systems, Elsevier, vol. 104(9), pages 714-728.
    3. McDonald, C.K. & MacLeod, N.D. & Lisson, S. & Corfield, J.P., 2019. "The Integrated Analysis Tool (IAT) – A model for the evaluation of crop-livestock and socio-economic interventions in smallholder farming systems," Agricultural Systems, Elsevier, vol. 176(C).
    4. Kanter, David R. & Musumba, Mark & Wood, Sylvia L.R. & Palm, Cheryl & Antle, John & Balvanera, Patricia & Dale, Virginia H. & Havlik, Petr & Kline, Keith L. & Scholes, R.J. & Thornton, Philip & Titton, 2018. "Evaluating agricultural trade-offs in the age of sustainable development," Agricultural Systems, Elsevier, vol. 163(C), pages 73-88.
    5. Ronner, E. & Descheemaeker, K. & Almekinders, C. & Ebanyat, P. & Giller, K.E., 2019. "Co-design of improved climbing bean production practices for smallholder farmers in the highlands of Uganda," Agricultural Systems, Elsevier, vol. 175(C), pages 1-12.
    6. Rodriguez, D & de Voil, P & Rufino, MC & Odendo, M & van Wijk, MT, 2017. "To mulch or to munch? Big modelling of big data," Agricultural Systems, Elsevier, vol. 153(C), pages 32-42.
    7. Falconnier, Gatien N. & Descheemaeker, Katrien & Van Mourik, Thomas A. & Sanogo, Ousmane M. & Giller, Ken E., 2015. "Understanding farm trajectories and development pathways: Two decades of change in southern Mali," Agricultural Systems, Elsevier, vol. 139(C), pages 210-222.
    8. Brown, Colin & Waldron, Scott, 2013. "Agrarian change, agricultural modernization and the modelling of agricultural households in Tibet," Agricultural Systems, Elsevier, vol. 115(C), pages 83-94.
    9. Valbuena, Diego & Tui, Sabine Homann-Kee & Erenstein, Olaf & Teufel, Nils & Duncan, Alan & Abdoulaye, Tahirou & Swain, Braja & Mekonnen, Kindu & Germaine, Ibro & Gérard, Bruno, 2015. "Identifying determinants, pressures and trade-offs of crop residue use in mixed smallholder farms in Sub-Saharan Africa and South Asia," Agricultural Systems, Elsevier, vol. 134(C), pages 107-118.
    10. Meyer-Aurich, Andreas & Karatay, Yusuf Nadi, 2019. "Effects of uncertainty and farmers' risk aversion on optimal N fertilizer supply in wheat production in Germany," Agricultural Systems, Elsevier, vol. 173(C), pages 130-139.
    11. Liu, Min & Huang, Jikun & Dries, Liesbeth & Heijman, Wim & Zhu, Xueqin, 2020. "How does land tenure reform impact upon pastoral livestock production? An empirical study for Inner Mongolia, China," China Economic Review, Elsevier, vol. 60(C).
    12. Matthys, Marie-Luise & Acharya, Sushant & Khatri, Sanjaya, 2021. "“Before cardamom, we used to face hardship”: Analyzing agricultural commercialization effects in Nepal through a local concept of the Good Life," World Development, Elsevier, vol. 141(C).
    13. Hammond, Jim & Rosenblum, Nathaniel & Breseman, Dana & Gorman, Léo & Manners, Rhys & van Wijk, Mark T. & Sibomana, Milindi & Remans, Roseline & Vanlauwe, Bernard & Schut, Marc, 2020. "Towards actionable farm typologies: Scaling adoption of agricultural inputs in Rwanda," Agricultural Systems, Elsevier, vol. 183(C).
    14. Sawosri, Arieska Wening & Mußhoff, Oliver, 2020. "Risk and time preferences of farmers in India and Indonesia," EFForTS Discussion Paper Series 32, University of Goettingen, Collaborative Research Centre 990 "EFForTS, Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems (Sumatra, Indonesia)".
    15. Giller, Ken E. & Andersson, Jens & Delaune, Thomas & Silva, João Vasco & Descheemaeker, Katrien & van de Ven, Gerrie & Schut, Antonius G.T. & van Wijk, Mark & Hammond, Jim & Hochman, Zvi & Taulya, God, 2022. "IFAD Research Series 83: The future of farming: who will produce our food?," IFAD Research Series 322005, International Fund for Agricultural Development (IFAD).
    16. Rohrig, Maren B.K. & Hardeweg, Bernd & Lentz, Wolfgang, 2018. "Efficient farming options for German apple growers under risk – a stochastic dominance approach," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 21(1).
    17. Meyer-Aurich, Andreas & Gandorfer, Markus & Trost, Benjamin & Ellmer, Frank & Baumecker, Michael, 2016. "Risk efficiency of irrigation to cereals in northeast Germany with respect to nitrogen fertilizer," Agricultural Systems, Elsevier, vol. 149(C), pages 132-138.
    18. F. Vidogbéna & A. Adégbidi & R. Tossou & F. Assogba-Komlan & T. Martin & M. Ngouajio & S. Simon & L. Parrot & S. T. Garnett & K. K. Zander, 2016. "Exploring factors that shape small-scale farmers’ opinions on the adoption of eco-friendly nets for vegetable production," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 18(6), pages 1749-1770, December.
    19. David J. Pannell & Roger Claassen, 2020. "The Roles of Adoption and Behavior Change in Agricultural Policy," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 42(1), pages 31-41, March.
    20. Monjardino, M. & McBeath, T. & Ouzman, J. & Llewellyn, R. & Jones, B., 2015. "Farmer risk-aversion limits closure of yield and profit gaps: A study of nitrogen management in the southern Australian wheatbelt," Agricultural Systems, Elsevier, vol. 137(C), pages 108-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:133:y:2015:i:c:p:63-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.