IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v103y2010i1p51-62.html
   My bibliography  Save this article

Constraints to farmers' adoption of direct-seeding mulch-based cropping systems: A farm scale modeling approach applied to the mountainous slopes of Vietnam

Author

Listed:
  • Affholder, François
  • Jourdain, Damien
  • Quang, Dang Dinh
  • Tuong, To Phuc
  • Morize, Marion
  • Ricome, Aymeric

Abstract

Substantial initiatives are under way in the tropical world to develop and promote direct-seeding mulch-based cropping systems (DMC) in order to reduce soil erosion and improve crop nutrient and water balances. DMC have been adopted by large-scale mechanized farmers, especially in America and Australia, but seldom by resource-poor farmers in the developing world. This study was conducted in Vietnam with the aim of evaluating the feasibility of farmers' implementing DMC in a mountainous area. The method involved simulation of rational households maximizing their income subject to food security constraints and availability of resources. It generated insight into why farmers of a small region were reluctant to adopt DMC due to the extra labor and input required to implement these techniques during the first years, which hampers their economic performance. In another region, under different biophysical and economic environmental conditions, the study showed that DMC were more likely to be adopted provided that possible constraints at the community level are overcome. The method also allowed us to discuss the types of technical improvements that would make DMC more attractive to farmers. For most farm types, labor required by mulch establishment would have to be reduced by more than 30%. This would mean spreading much less biomass than the 7 t ha-1 currently necessary, compromising the weed-control function of mulch. This would be technically feasible only by using herbicides but this would not be economically sound since it would increase cash requirements. The study showed that subsidies of 50 to more than 200 USD ha-1 were necessary to enable the conversion of all conventionally managed sloping land into DMC in the simulations. These amounts are high relatively to gross margins (250-750 USD ha-1) under conventional management.

Suggested Citation

  • Affholder, François & Jourdain, Damien & Quang, Dang Dinh & Tuong, To Phuc & Morize, Marion & Ricome, Aymeric, 2010. "Constraints to farmers' adoption of direct-seeding mulch-based cropping systems: A farm scale modeling approach applied to the mountainous slopes of Vietnam," Agricultural Systems, Elsevier, vol. 103(1), pages 51-62, January.
  • Handle: RePEc:eee:agisys:v:103:y:2010:i:1:p:51-62
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308-521X(09)00103-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shiferaw, Bekele & Holden, Stein T., 1998. "Resource degradation and adoption of land conservation technologies in the Ethiopian Highlands: A case study in Andit Tid, North Shewa," Agricultural Economics, Blackwell, vol. 18(3), pages 233-247, May.
    2. Castella, Jean-Christophe & Quang, Dang Dinh, 2002. "Doi Moi in the Mountains," IRRI Books, International Rice Research Institute (IRRI), number 281819.
    3. Alary, V. & Nefzaoui, A. & Jemaa, M. Ben, 2007. "Promoting the adoption of natural resource management technology in arid and semi-arid areas: Modelling the impact of spineless cactus in alley cropping in Central Tunisia," Agricultural Systems, Elsevier, vol. 94(2), pages 573-585, May.
    4. Bruno Barbier, 1998. "Induced innovation and land degradation: Results from a bioeconomic model of a village in West Africa," Agricultural Economics, International Association of Agricultural Economists, vol. 19(1-2), pages 15-25, September.
    5. White, Douglas S. & Labarta, Ricardo A. & Leguia, Efrain J., 2005. "Technology adoption by resource-poor farmers: considering the implications of peak-season labor costs," Agricultural Systems, Elsevier, vol. 85(2), pages 183-201, August.
    6. Barbier, Bruno, 1998. "Induced innovation and land degradation: Results from a bioeconomic model of a village in West Africa," Agricultural Economics, Blackwell, vol. 19(1-2), pages 15-25, September.
    7. Knowler, Duncan & Bradshaw, Ben, 2007. "Farmers' adoption of conservation agriculture: A review and synthesis of recent research," Food Policy, Elsevier, vol. 32(1), pages 25-48, February.
    8. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    9. Yiridoe, Emmanuel K. & Langyintuo, Augustine S. & Dogbe, Wilson, 2006. "Economics of the impact of alternative rice cropping systems on subsistence farming: Whole-farm analysis in northern Ghana," Agricultural Systems, Elsevier, vol. 91(1-2), pages 102-121, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Massamba Diop & Ngonidzashe Chirinda & Adnane Beniaich & Mohamed El Gharous & Khalil El Mejahed, 2022. "Soil and Water Conservation in Africa: State of Play and Potential Role in Tackling Soil Degradation and Building Soil Health in Agricultural Lands," Sustainability, MDPI, vol. 14(20), pages 1-29, October.
    2. Alary, V. & Corbeels, M. & Affholder, F. & Alvarez, S. & Soria, A. & Valadares Xavier, J.H. & da Silva, F.A.M. & Scopel, E., 2016. "Economic assessment of conservation agriculture options in mixed crop-livestock systems in Brazil using farm modelling," Agricultural Systems, Elsevier, vol. 144(C), pages 33-45.
    3. Lairez, Juliette & Jourdain, Damien & Lopez-Ridaura, Santiago & Syfongxay, Chanthaly & Affholder, François, 2023. "Multicriteria assessment of alternative cropping systems at farm level. A case with maize on family farms of South East Asia," Agricultural Systems, Elsevier, vol. 212(C).
    4. Ditzler, Lenora & Komarek, Adam M. & Chiang, Tsai-Wei & Alvarez, Stéphanie & Chatterjee, Shantonu Abe & Timler, Carl & Raneri, Jessica E. & Carmona, Natalia Estrada & Kennedy, Gina & Groot, Jeroen C.J, 2019. "A model to examine farm household trade-offs and synergies with an application to smallholders in Vietnam," Agricultural Systems, Elsevier, vol. 173(C), pages 49-63.
    5. Jourdain, Damien & Lairez, Juliette & Striffler, Bruno & Lundhede, Thomas, 2022. "A choice experiment approach to evaluate maize farmers’ decision-making processes in Lao PDR," Journal of choice modelling, Elsevier, vol. 44(C).
    6. Anne Gobin & Le Thi Thu Hien & Le Trinh Hai & Pham Ha Linh & Nguyen Ngoc Thang & Pham Quang Vinh, 2020. "Adaptation to Land Degradation in Southeast Vietnam," Land, MDPI, vol. 9(9), pages 1-25, August.
    7. Li, Qi & Li, Kai, 2020. "Rice farmers’ demands for productive services: evidence from Chinese farmers," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 23(3), September.
    8. Daniel Sumner & Maria Elisa Christie & Stéphane Boulakia, 2017. "Conservation agriculture and gendered livelihoods in Northwestern Cambodia: decision-making, space and access," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 34(2), pages 347-362, June.
    9. Lampach, Nicolas & To-The, Nguyen & Nguyen-Anh, Tuan, 2021. "Technical efficiency and the adoption of multiple agricultural technologies in the mountainous areas of Northern Vietnam," Land Use Policy, Elsevier, vol. 103(C).
    10. Damien Jourdain & Juliette Lairez & Bruno Striffler & François Affholder, 2020. "Farmers’ preference for cropping systems and the development of sustainable intensification: a choice experiment approach," Review of Agricultural, Food and Environmental Studies, Springer, vol. 101(4), pages 417-437, December.
    11. Kumar, Anjani & Takeshima, Hiroyuki & Thapa, Ganesh & Adhikari, Naveen & Saroj, Sunil & Karkee, Madhab & Joshi, P.K., 2020. "Adoption and diffusion of improved technologies and production practices in agriculture: Insights from a donor-led intervention in Nepal," Land Use Policy, Elsevier, vol. 95(C).
    12. Tuong The Tran & Aslihan Arslan & Giacomo Branca & Trinh Van Mai, 2018. "Bio-Economic Assessment of Climate-Smart Tea Production in The Northern Mountainous Region of Vietnam," Asian Journal of Agriculture and Development, Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA), vol. 15(2), pages 1-20, December.
    13. Jourdain, Damien & Lairez, Juliette & Striffler, Bruno & Affholder, François, 2020. "Farmers’ preference for cropping systems and the development of sustainable intensification: a choice experiment approach," Review of Agricultural, Food and Environmental Studies, Institut National de la Recherche Agronomique (INRA), vol. 101(4), March.
    14. Damien Jourdain & Juliette Lairez & Bruno Striffler & Thomas Lundhede, 2022. "A choice experiment approach to evaluate maize farmers’ decision-making processes in Lao PDR," Post-Print hal-03737618, HAL.
    15. Djanibekov, Utkur & Villamor, Grace B., 2014. "Land use strategies for sustainable rural development under revenue uncertainty: A case from Indonesia," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182807, European Association of Agricultural Economists.
    16. Quang, Dang Viet & Schreinemachers, Pepijn & Berger, Thomas, 2014. "Ex-ante assessment of soil conservation methods in the uplands of Vietnam: An agent-based modeling approach," Agricultural Systems, Elsevier, vol. 123(C), pages 108-119.
    17. Damien Jourdain & Juliette Lairez & Bruno Striffler & François Affholder, 2020. "Farmers’ preference for cropping systems and the development of sustainable intensification: a choice experiment approach," Post-Print hal-02995632, HAL.
    18. repec:ags:ijag24:346840 is not listed on IDEAS
    19. Komarek, Adam M. & Bell, Lindsay W. & Whish, Jeremy P.M. & Robertson, Michael J. & Bellotti, William D., 2015. "Whole-farm economic, risk and resource-use trade-offs associated with integrating forages into crop–livestock systems in western China," Agricultural Systems, Elsevier, vol. 133(C), pages 63-72.
    20. Pannell, David J. & Llewellyn, Rick S. & Corbeels, Marc, 2013. "The farm-level economics of conservation agriculture for resource-poor farmers," Working Papers 166526, University of Western Australia, School of Agricultural and Resource Economics.
    21. Damien Jourdain1,2,3 & Juliette Lairez4,5 & Bruno Striffler & François Affholder, 2020. "Farmers’ preference for cropping systems and the development of sustainable intensification: a choice experiment approach," Review of Agricultural, Food and Environmental Studies, INRA Department of Economics, vol. 101(4), pages 417-437.
    22. Pedzisa, Tarisayi & Rugube, Lovemore & Winter-Nelson, Alex & Baylis, Kathy & Mazvimavi, Kizito, 2016. "The Intensity of adoption of Conservation agriculture by smallholder farmers in Zimbabwe," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 54(3), January.
    23. Kotir, Julius H. & Bell, Lindsay W. & Kirkegaard, John A. & Whish, Jeremy & Aikins, Kojo Atta, 2022. "Labour demand – The forgotten input influencing the execution and adoptability of alternative cropping systems in Eastern Australia," Agricultural Systems, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alary, V. & Corbeels, M. & Affholder, F. & Alvarez, S. & Soria, A. & Valadares Xavier, J.H. & da Silva, F.A.M. & Scopel, E., 2016. "Economic assessment of conservation agriculture options in mixed crop-livestock systems in Brazil using farm modelling," Agricultural Systems, Elsevier, vol. 144(C), pages 33-45.
    2. Le Gal, P.-Y. & Dugué, P. & Faure, G. & Novak, S., 2011. "How does research address the design of innovative agricultural production systems at the farm level? A review," Agricultural Systems, Elsevier, vol. 104(9), pages 714-728.
    3. Damien Jourdain & Juliette Lairez & Bruno Striffler & François Affholder, 2020. "Farmers’ preference for cropping systems and the development of sustainable intensification: a choice experiment approach," Review of Agricultural, Food and Environmental Studies, Springer, vol. 101(4), pages 417-437, December.
    4. Berkhout, E.D. & Schipper, R.A. & Van Keulen, H. & Coulibaly, O., 2011. "Heterogeneity in farmers' production decisions and its impact on soil nutrient use: Results and implications from northern Nigeria," Agricultural Systems, Elsevier, vol. 104(1), pages 63-74, January.
    5. Kuiper, Marijke H. & Meijerink, Gerdien W. & Eaton, Derek J.F., 2006. "Rural Livelihoods: Interplay Between Farm Activities, Non-farm Activities and the Resource Base," 2006 Annual Meeting, August 12-18, 2006, Queensland, Australia 25442, International Association of Agricultural Economists.
    6. Damien Jourdain1,2,3 & Juliette Lairez4,5 & Bruno Striffler & François Affholder, 2020. "Farmers’ preference for cropping systems and the development of sustainable intensification: a choice experiment approach," Review of Agricultural, Food and Environmental Studies, INRA Department of Economics, vol. 101(4), pages 417-437.
    7. Damien Jourdain & Juliette Lairez & Bruno Striffler & François Affholder, 2020. "Farmers’ preference for cropping systems and the development of sustainable intensification: a choice experiment approach," Post-Print hal-02995632, HAL.
    8. S. Nedumaran & Beleke Shiferaw & M. Bantilan & K. Palanisami & Suhas Wani, 2014. "Bioeconomic modeling of farm household decisions for ex-ante impact assessment of integrated watershed development programs in semi-arid India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(2), pages 257-286, April.
    9. Jourdain, Damien & Lairez, Juliette & Striffler, Bruno & Affholder, François, 2020. "Farmers’ preference for cropping systems and the development of sustainable intensification: a choice experiment approach," Review of Agricultural, Food and Environmental Studies, Institut National de la Recherche Agronomique (INRA), vol. 101(4), March.
    10. Barbier, Bruno & Bergeron, Gilles, 2001. "Natural resource management in the hillsides of Honduras: bioeconomic modeling at the micro-watershed level," Research reports 123, International Food Policy Research Institute (IFPRI).
    11. Nelson Mango & Clifton Makate & Lulseged Tamene & Powell Mponela & Gift Ndengu, 2018. "Adoption of Small-Scale Irrigation Farming as a Climate-Smart Agriculture Practice and Its Influence on Household Income in the Chinyanja Triangle, Southern Africa," Land, MDPI, vol. 7(2), pages 1-19, April.
    12. Ponsioen, Thomas C. & Hengsdijk, Huib & Wolf, Joost & van Ittersum, Martin K. & Rotter, Reimund P. & Son, Tran Thuc & Laborte, Alice G., 2006. "TechnoGIN, a tool for exploring and evaluating resource use efficiency of cropping systems in East and Southeast Asia," Agricultural Systems, Elsevier, vol. 87(1), pages 80-100, January.
    13. Bevis, Leah E.M. & Conrad, Jon M. & Barrett, Christopher B. & Gray, Clark, 2017. "State-conditioned soil investment in rural Uganda," Research in Economics, Elsevier, vol. 71(2), pages 254-281.
    14. Seebens, Holger, 2008. "One size fits all? Female Headed Households, Income Risk, and Access to Resources," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 43609, European Association of Agricultural Economists.
    15. Pant, Laxmi Prasad, 2016. "Paradox of mainstreaming agroecology for regional and rural food security in developing countries," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 305-316.
    16. Noltze, Martin & Schwarze, Stefan & Qaim, Matin, 2013. "Impacts of natural resource management technologies on agricultural yield and household income: The system of rice intensification in Timor Leste," Ecological Economics, Elsevier, vol. 85(C), pages 59-68.
    17. Alary, V. & Nefzaoui, A. & Jemaa, M. Ben, 2007. "Promoting the adoption of natural resource management technology in arid and semi-arid areas: Modelling the impact of spineless cactus in alley cropping in Central Tunisia," Agricultural Systems, Elsevier, vol. 94(2), pages 573-585, May.
    18. Mahamadou Belem & Sansa Youl & Raphael Manlay & Bruno Barbier & Christophe Lepage, 2000. "MIROT: A multi-Agent System Model for the Simulation of the Dynamics of Carbon Resources of West-African Village Territories," Regional and Urban Modeling 283600008, EcoMod.
    19. Gray, Leslie C. & Kevane, Michael, 2001. "Evolving Tenure Rights and Agricultural Intensification in Southwestern Burkina Faso," World Development, Elsevier, vol. 29(4), pages 573-587, April.
    20. Liu, Hongmei & Huang, Qiuqiong, 2013. "Adoption and continued use of contour cultivation in the highlands of southwest China," Ecological Economics, Elsevier, vol. 91(C), pages 28-37.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:103:y:2010:i:1:p:51-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.