IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v113y2012icp28-38.html
   My bibliography  Save this article

Price induced irrigation water saving: Unraveling conflicts and synergies between European agricultural and water policies for a Greek Water District

Author

Listed:
  • Kampas, Athanasios
  • Petsakos, Athanasios
  • Rozakis, Stelios

Abstract

The 2003 CAP reform considerably affects cropping patterns in European agriculture. At the same time the imperatives of the Water Framework Directive (WFD) are expected to modify irrigation decisions especially in Southern Europe where irrigated agriculture utilizes about 70–80% of total water. The paper uses a nonlinear optimization model that incorporates rain-fed, irrigated and fodder crops to examine the impacts of water pricing and CAP reform on cropping patterns, water use, irrigation technology use and farm returns in the region of Thessaly, Greece. The results indicate that, although there are important trade-offs between water pricing (WFD) and decoupling (CAP reform), water use is more sensitive to water pricing in the post-reform CAP.

Suggested Citation

  • Kampas, Athanasios & Petsakos, Athanasios & Rozakis, Stelios, 2012. "Price induced irrigation water saving: Unraveling conflicts and synergies between European agricultural and water policies for a Greek Water District," Agricultural Systems, Elsevier, vol. 113(C), pages 28-38.
  • Handle: RePEc:eee:agisys:v:113:y:2012:i:c:p:28-38
    DOI: 10.1016/j.agsy.2012.07.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X12001011
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2012.07.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsur, Yacov & Dinar, Ariel, 1997. "The Relative Efficiency and Implementation Costs of Alternative Methods for Pricing Irrigation Water," The World Bank Economic Review, World Bank, vol. 11(2), pages 243-262, May.
    2. David Zilberman & Doug Parker, 1996. "Explaining Irrigation Technology Choices: A Microparameter Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(4), pages 1064-1072.
    3. Bhaskar, Arathi & Beghin, John C., 2009. "How Coupled Are Decoupled Farm Payments? A Review of the Evidence," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 34(1), pages 1-24, April.
    4. Peter Berck & Gloria Helfand, 1990. "Reconciling the von Liebig and Differentiable Crop Production Functions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 72(4), pages 985-996.
    5. Bauer, Siegfried & Kasnakoglu, Haluk, 1990. "Non-linear programming models for sector and policy analysis : Experiences with the Turkish agricultural sector model," Economic Modelling, Elsevier, vol. 7(3), pages 275-290, July.
    6. de Fraiture, Charlotte & Perry, C. J., 2007. "Why is agricultural water demand unresponsive at low price ranges?," Book Chapters,, International Water Management Institute.
    7. Basil Manos & Thomas Bournaris & Mohd Kamruzzaman & Moss Begum & Ara Anjuman & Jason Papathanasiou, 2006. "Regional Impact of Irrigation Water Pricing in Greece under Alternative Scenarios of European Policy: A Multicriteria Analysis," Regional Studies, Taylor & Francis Journals, vol. 40(9), pages 1055-1068.
    8. Bartolini, F. & Bazzani, G.M. & Gallerani, V. & Raggi, M. & Viaggi, D., 2007. "The impact of water and agriculture policy scenarios on irrigated farming systems in Italy: An analysis based on farm level multi-attribute linear programming models," Agricultural Systems, Elsevier, vol. 93(1-3), pages 90-114, March.
    9. Goetz, Renan U. & Martinez, Yolanda & Rodrigo, Jofre, 2008. "Water allocation by social choice rules: The case of sequential rules," Ecological Economics, Elsevier, vol. 65(2), pages 304-314, April.
    10. Michael R. Moore & Noel R. Gollehon & Marc B. Carey, 1994. "Multicrop Production Decisions in Western Irrigated Agriculture: The Role of Water Price," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 76(4), pages 859-874.
    11. de Fraiture, Charlotte & Perry, C. J., 2007. "Why is agricultural water demand unresponsive at low price ranges?," IWMI Books, Reports H040602, International Water Management Institute.
    12. Oliver Balkhausen & Martin Banse & Harald Grethe, 2008. "Modelling CAP Decoupling in the EU: A Comparison of Selected Simulation Models and Results," Journal of Agricultural Economics, Wiley Blackwell, vol. 59(1), pages 57-71, February.
    13. Llewelyn, Richard V. & Featherstone, Allen M., 1997. "A comparison of crop production functions using simulated data for irrigated corn in western Kansas," Agricultural Systems, Elsevier, vol. 54(4), pages 521-538, August.
    14. Schoengold, Karina & Zilberman, David, 2007. "The Economics of Water, Irrigation, and Development," Handbook of Agricultural Economics, in: Robert Evenson & Prabhu Pingali (ed.), Handbook of Agricultural Economics, edition 1, volume 3, chapter 58, pages 2933-2977, Elsevier.
    15. Amir, I. & Fisher, F. M., 1999. "Analyzing agricultural demand for water with an optimizing model," Agricultural Systems, Elsevier, vol. 61(1), pages 45-56, July.
    16. Guindé, Loïc & Millet, Guy & Rozakis, Stelios & Sourie, Jean-Claude & Tréguer, David, 2005. "The CAP Mid-Term Reform Impacts to French Cereal-Oriented Farms," 89th Seminar, February 2-5, 2005, Parma, Italy 232607, European Association of Agricultural Economists.
    17. Khanna, Madhu & Isik, Murat & Zilberman, David, 2002. "Cost-effectiveness of alternative green payment policies for conservation technology adoption with heterogeneous land quality," Agricultural Economics, Blackwell, vol. 27(2), pages 157-174, August.
    18. Mouratiadou, Ioanna & Moran, Dominic, 2007. "Mapping public participation in the Water Framework Directive: A case study of the Pinios River Basin, Greece," Ecological Economics, Elsevier, vol. 62(1), pages 66-76, April.
    19. José A. Gómez‐Limón & Manuel Arriaza & Julio Berbel, 2002. "Conflicting Implementation of Agricultural and Water Policies in Irrigated Areas in the EU," Journal of Agricultural Economics, Wiley Blackwell, vol. 53(2), pages 259-281, July.
    20. Quirino Paris & Keith Knapp, 1989. "Estimation of von Liebig Response Functions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(1), pages 178-186.
    21. Grimm, Sadi S. & Paris, Quirino & Williams, William A., 1987. "A Von Liebig Model For Water And Nitrogen Crop Response," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 12(2), pages 1-11, December.
    22. Konstantinos Giannakas & Murray Fulton, 2002. "The Economics of Decoupled Farm Payments under Costly and Imperfect Enforcement," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 50(3), pages 297-315, November.
    23. Negri, Donald H. & Brooks, Douglas H., 1990. "Determinants Of Irrigation Technology Choice," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 15(2), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Humblot, Pierre & Jayet, Pierre-Alain & Petsakos, Athanasios, 2017. "Farm-level bio-economic modeling of water and nitrogen use: Calibrating yield response functions with limited data," Agricultural Systems, Elsevier, vol. 151(C), pages 47-60.
    2. Li, Mengna & Zhou, Shiwei & Shen, Shuaijie & Wang, Jiale & Yang, Yuhao & Wu, Yangzhong & Chen, Fu & Lei, Yongdeng, 2024. "Climate-smart irrigation strategy can mitigate agricultural water consumption while ensuring food security under a changing climate," Agricultural Water Management, Elsevier, vol. 292(C).
    3. Sapino, Francesco & Pérez-Blanco, C. Dionisio & Gutiérrez-Martín, Carlos & García-Prats, Alberto & Pulido-Velazquez, Manuel, 2022. "Influence of crop-water production functions on the expected performance of water pricing policies in irrigated agriculture," Agricultural Water Management, Elsevier, vol. 259(C).
    4. Rodrigues, Gonçalo C. & Paredes, Paula & Gonçalves, José M. & Alves, Isabel & Pereira, Luis S., 2013. "Comparing sprinkler and drip irrigation systems for full and deficit irrigated maize using multicriteria analysis and simulation modelling: Ranking for water saving vs. farm economic returns," Agricultural Water Management, Elsevier, vol. 126(C), pages 85-96.
    5. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).
    6. Carlos Gómez & C. Pérez-Blanco, 2014. "Simple Myths and Basic Maths About Greening Irrigation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4035-4044, September.
    7. Minjun Shi & Xiaojun Wang & Hong Yang & Tao Wang, 2014. "Pricing or Quota? A Solution to Water Scarcity in Oasis Regions in China: A Case Study in the Heihe River Basin," Sustainability, MDPI, vol. 6(11), pages 1-20, October.
    8. Giordano, Raffaele & D’Agostino, Daniela & Apollonio, Ciro & Scardigno, Alessandra & Pagano, Alessandro & Portoghese, Ivan & Lamaddalena, Nicola & Piccinni, Alberto F. & Vurro, Michele, 2015. "Evaluating acceptability of groundwater protection measures under different agricultural policies," Agricultural Water Management, Elsevier, vol. 147(C), pages 54-66.
    9. Patrizia Borsotto & Francesca Moino & Silvia Novelli, 2021. "Modeling change in the ratio of water irrigation costs to farm incomes under various scenarios with integrated FADN and administrative data," Economia agro-alimentare, FrancoAngeli Editore, vol. 23(3), pages 1-19.
    10. Maria Blanco & Peter Witzke & Ignacio Perez Dominguez & Guna Salputra & Pilar Martinez, 2015. "Extension of the CAPRI model with an irrigation sub-module," JRC Research Reports JRC99828, Joint Research Centre.
    11. Violeta Cabello Villarejo & Cristina Madrid Lopez, 2014. "Water use in arid rural systems and the integration of water and agricultural policies in Europe: the case of Andarax river basin," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(4), pages 957-975, August.
    12. Pierre-Alain Jayet & Athanasios Petsakos & Raja Chakir & Anna Lungarska & Stéphane De Cara & Elvire Petel & Pierre Humblot & Caroline Godard & David Leclère & Pierre Cantelaube & Cyril Bourgeois & Mél, 2023. "The European agro-economic model AROPAj," Working Papers hal-04109872, HAL.
    13. Delphine Barberis & Ines Chiadmi & Pierre Humblot & Pierre-Alain Jayet & Anna Lungarska & Maxime Ollier, 2021. "Climate Change and Irrigation Water: Should the North/South Hierarchy of Impacts on Agricultural Systems Be Reconsidered? [Changement climatique et eau d'irrigation : La hiérarchie Nord/Sud des imp," Post-Print hal-03152273, HAL.
    14. Mirra, Laura & D'Urso, Guido & Giannoccaro, Giacomo & Cicia, Gianni & Del Giudice, Teresa, 2021. "Water Pricing in Agriculture following the Water Framework Directive: A Systematic Review of the Literature," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 12(04), December.
    15. Pierre-Alain Jayet & Delphine Barberis & Pierre Humblot & Anna Lungarska, 2018. "Spatializing the results of a bioeconomic model on water demand for irrigation needs [Spatialisation de la demande en eau d’irrigation estimée par un modèle bioéconomique]," Post-Print hal-02617894, HAL.
    16. Qing Zhou & Yali Zhang & Feng Wu, 2022. "Can Water Price Improve Water Productivity? A Water-Economic-Model-Based Study in Heihe River Basin, China," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    17. Carlos Mario Gómez Gómez & C. D. Pérez-Blanco & David Adamson & Adam Loch, 2018. "Managing Water Scarcity at a River Basin Scale with Economic Instruments," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-31, January.
    18. Reidsma, Pytrik & Janssen, Sander & Jansen, Jacques & van Ittersum, Martin K., 2018. "On the development and use of farm models for policy impact assessment in the European Union – A review," Agricultural Systems, Elsevier, vol. 159(C), pages 111-125.
    19. Drivas, Kyriakos & Rozakis, Stelios & Xesfingi, Sofia, 2019. "The effect of house energy efficiency programs on the extensive and intensive margin of lower-income households’ investment behavior," Energy Policy, Elsevier, vol. 128(C), pages 607-615.
    20. Shaojian Chen & Yuanyuan Cao & Jun Li, 2021. "The Effect of Water Rights Trading Policy on Water Resource Utilization Efficiency: Evidence from a Quasi-Natural Experiment in China," Sustainability, MDPI, vol. 13(9), pages 1-17, May.
    21. Levidow, Les & Zaccaria, Daniele & Maia, Rodrigo & Vivas, Eduardo & Todorovic, Mladen & Scardigno, Alessandra, 2014. "Improving water-efficient irrigation: Prospects and difficulties of innovative practices," Agricultural Water Management, Elsevier, vol. 146(C), pages 84-94.
    22. Ifigenia Kagalou & Dionissis Latinopoulos, 2020. "Filling the Gap between Ecosystem Services Concept and River Basin Management Plans: The Case of Greece in WFD 20+," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    23. Wei Qu & Yanmei Tan & Zhentao Li & Eefje Aarnoudse & Qin Tu, 2020. "Agricultural Water Use Efficiency—A Case Study of Inland-River Basins in Northwest China," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    24. Tian, Guiliang & Wu, Xuan & Zhao, Qiuya & Li, Jiawen & Zhu, Mengqiu, 2024. "The impact of integrated agricultural water pricing reform on farmers' income in China," Agricultural Water Management, Elsevier, vol. 299(C).
    25. Alexandros Gkatsikos & Konstadinos Mattas & Efstratios Loizou & Dimitrios Psaltopoulos, 2022. "The Neglected Water Rebound Effect of Income and Employment Growth," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 379-398, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tembo, Gelson & Brorsen, B. Wade & Epplin, Francis M., 2003. "Linear Response Stochastic Plateau Functions," 2003 Annual Meeting, February 1-5, 2003, Mobile, Alabama 35217, Southern Agricultural Economics Association.
    2. Rodriguez, Divina Gracia P. & Bullock, David S., 2015. "Testing the Validity of Stanford's 1.2 Rule for N Fertilizer Recommendation," 2015 Conference, August 9-14, 2015, Milan, Italy 212289, International Association of Agricultural Economists.
    3. Xie, Yang & Zilberman, David, 2015. "Water Storage Capacities versus Water Use Efficiency: Substitutes or Complements?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205439, Agricultural and Applied Economics Association.
    4. George Frisvold & Charles Sanchez & Noel Gollehon & Sharon B. Megdal & Paul Brown, 2018. "Evaluating Gravity-Flow Irrigation with Lessons from Yuma, Arizona, USA," Sustainability, MDPI, vol. 10(5), pages 1-27, May.
    5. Rodrigues, Gonçalo C. & Paredes, Paula & Gonçalves, José M. & Alves, Isabel & Pereira, Luis S., 2013. "Comparing sprinkler and drip irrigation systems for full and deficit irrigated maize using multicriteria analysis and simulation modelling: Ranking for water saving vs. farm economic returns," Agricultural Water Management, Elsevier, vol. 126(C), pages 85-96.
    6. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2014. "Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence," Journal of Environmental Economics and Management, Elsevier, vol. 67(2), pages 189-208.
    7. Olen, Beau & Wu, JunJie & Langpap, Christian, 2012. "Crop-specific Irrigation Choices for Major Crops on the West Coast: Water Scarcity and Climatic Determinants," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124843, Agricultural and Applied Economics Association.
    8. Speelman, Stijn & Buysse, Jeroen & Farolfi, Stefano & Frija, Aymen & D'Haese, Marijke & D'Haese, Luc, 2009. "Estimating the impacts of water pricing on smallholder irrigators in North West Province, South Africa," Agricultural Water Management, Elsevier, vol. 96(11), pages 1560-1566, November.
    9. Celine Nauges & Phoebe Koundouri & Vangelis Tzouvelekas, 2004. "Endogenous Technology Adoption Under Production Risk: Theory and Application to Irrigation Technology," Working Papers 0411, University of Crete, Department of Economics.
    10. de Bonviller, Simon & Wheeler, Sarah Ann & Zuo, Alec, 2020. "The dynamics of groundwater markets: Price leadership and groundwater demand elasticity in the Murrumbidgee, Australia," Agricultural Water Management, Elsevier, vol. 239(C).
    11. Kampas, Athanasios & Melfou, Katerina & Aftab, Ashar, 2013. "Designing Regulatory Policies for Complex Externalities: The Case of Agricultural Pollution," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 14(2), pages 1-14.
    12. Peter Berck & Jacqueline Geoghegan & Stephen Stohs, 2000. "A Strong Test of the von Liebig Hypothesis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(4), pages 948-955.
    13. Rodriguez, Divina Gracia P. & Bullock, David S., 2015. "An Empirical Investigation of the Stanford’s “1.2 Rule” for Nitrogen Fertilizer Recommendation," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205314, Agricultural and Applied Economics Association.
    14. Vicente Ruiz, 2016. "Groundwater Overdraft, Electricity, and Wrong Incentives: Evidence from Mexico," Working Papers 2016.05, FAERE - French Association of Environmental and Resource Economists.
    15. Lichtenberg, Erik, 2002. "Agriculture and the environment," Handbook of Agricultural Economics, in: B. L. Gardner & G. C. Rausser (ed.), Handbook of Agricultural Economics, edition 1, volume 2, chapter 23, pages 1249-1313, Elsevier.
    16. Sarkar, Sampriti & Lupi, Frank, 2022. "Modelling mid-western corn yield response to phosphorus fertilizer in Michigan," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322478, Agricultural and Applied Economics Association.
    17. Schuck, Eric C. & Green, Gareth P. & Sunding, David L., 2000. "Irrigation Water Rate Reform And Endogenous Technological Change," 2000 Annual Meeting, June 29-July 1, 2000, Vancouver, British Columbia 36463, Western Agricultural Economics Association.
    18. Sengupta, Sanchita, 2010. "Three Essays in Environmental and Agricultural Issues," ISU General Staff Papers 201001010800002848, Iowa State University, Department of Economics.
    19. Klaus Moeltner & A. Ford Ramsey & Clinton L. Neill, 2021. "Bayesian Kinked Regression with Unobserved Thresholds: An Application to the von Liebig Hypothesis," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(5), pages 1832-1856, October.
    20. Wu, JunJie & Zilberman, David & Babcock, Bruce A., 2001. "Environmental and Distributional Impacts of Conservation Targeting Strategies," Journal of Environmental Economics and Management, Elsevier, vol. 41(3), pages 333-350, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:113:y:2012:i:c:p:28-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.