IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i16p5998-d1218187.html
   My bibliography  Save this article

Gradient Boosting Approach to Predict Energy-Saving Awareness of Households in Kitakyushu

Author

Listed:
  • Nitin Kumar Singh

    (Graduate School of Advanced Science and Engineering, Hiroshima University, Higashihiroshima 739-8527, Japan)

  • Takuya Fukushima

    (Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan)

  • Masaaki Nagahara

    (Graduate School of Advanced Science and Engineering, Hiroshima University, Higashihiroshima 739-8527, Japan)

Abstract

This paper aims to develop a machine-learning model based on a gradient-boosting algorithm to predict the energy-saving awareness of households using a questionnaire survey and 11-month energy data collected from more than 200 smart houses in Kitakyushu, Japan. We utilize the LightGBM (light gradient boosting machine) classifier to perform feature selection for the prediction. By using this approach, we demonstrate that the key features are the standard deviations of electricity purchased between 8 a.m. and 9 a.m. and electricity consumed between 7 p.m. and 9 p.m. Next, by using k -means clustering we split the households based on the obtained features into three groups. Finally, by using statistical hypothesis testing, we prove that these three groups have statistically distinct levels of energy-saving awareness. This model enables us to detect eco-friendly households from their energy data, which may support energy policymaking.

Suggested Citation

  • Nitin Kumar Singh & Takuya Fukushima & Masaaki Nagahara, 2023. "Gradient Boosting Approach to Predict Energy-Saving Awareness of Households in Kitakyushu," Energies, MDPI, vol. 16(16), pages 1-10, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5998-:d:1218187
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/16/5998/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/16/5998/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dorian, James P. & Franssen, Herman T. & Simbeck, Dale R., 2006. "Global challenges in energy," Energy Policy, Elsevier, vol. 34(15), pages 1984-1991, October.
    2. Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
    3. Pengfei Sheng & Yaping He & Xiaohui Guo, 2017. "The impact of urbanization on energy consumption and efficiency," Energy & Environment, , vol. 28(7), pages 673-686, November.
    4. Shen, Meng & Lu, Yujie & Wei, Kua Harn & Cui, Qingbin, 2020. "Prediction of household electricity consumption and effectiveness of concerted intervention strategies based on occupant behaviour and personality traits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    5. Estiri, Hossein, 2014. "Building and household X-factors and energy consumption at the residential sector," Energy Economics, Elsevier, vol. 43(C), pages 178-184.
    6. Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2020. "Do drivers of CO2 emission growth alter overtime and by the stage of economic development?," Energy Policy, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nitin Kumar Singh & Masaaki Nagahara, 2024. "LightGBM-, SHAP-, and Correlation-Matrix-Heatmap-Based Approaches for Analyzing Household Energy Data: Towards Electricity Self-Sufficient Houses," Energies, MDPI, vol. 17(17), pages 1-32, September.
    2. Nibedita Mahanta & Ruma Talukdar, 2024. "Forecasting of Electricity Consumption by Seasonal Autoregressive Integrated Moving Average Model in Assam, India," International Journal of Energy Economics and Policy, Econjournals, vol. 14(5), pages 393-400, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Li & Abbasi, Kashif Raza & Salem, Sultan & Irfan, Muhammad & Alvarado, Rafael & Lv, Kangjuan, 2022. "How technological innovation and institutional quality affect sectoral energy consumption in Pakistan? Fresh policy insights from novel econometric approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    2. Xinkuo Xu & Liyan Han, 2017. "Diverse Effects of Consumer Credit on Household Carbon Emissions at Quantiles: Evidence from Urban China," Sustainability, MDPI, vol. 9(9), pages 1-25, September.
    3. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    4. Wenlu Zhao & Guanghu Jin & Chenyue Huang & Jinji Zhang, 2023. "Attention and Sentiment of the Chinese Public toward a 3D Greening System Based on Sina Weibo," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    5. Kangyin Dong & Yalin Han & Yue Dou & Muhammad Shahbaz, 2022. "Moving toward carbon neutrality: Assessing natural gas import security and its impact on CO2 emissions," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(4), pages 751-770, August.
    6. Juana Isabel Méndez & Adán Medina & Pedro Ponce & Therese Peffer & Alan Meier & Arturo Molina, 2022. "Evolving Gamified Smart Communities in Mexico to Save Energy in Communities through Intelligent Interfaces," Energies, MDPI, vol. 15(15), pages 1-29, July.
    7. Manal Ayyad Dhif Alshammry & Saqib Muneer, 2023. "The influence of economic development, capital formation, and internet use on environmental degradation in Saudi Arabia," Future Business Journal, Springer, vol. 9(1), pages 1-16, December.
    8. Sakkarin Nonthapot & Tanawat Watchalaanun, 2023. "Effects of Deglobalization on Food and Energy Insecurity in the GMS Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 374-381, September.
    9. Lloyd, Bob & Subbarao, Srikanth, 2009. "Development challenges under the Clean Development Mechanism (CDM)--Can renewable energy initiatives be put in place before peak oil?," Energy Policy, Elsevier, vol. 37(1), pages 237-245, January.
    10. Huang, Beijia & Zhang, Long & Ma, Linmao & Bai, Wuliyasu & Ren, Jingzheng, 2021. "Multi-criteria decision analysis of China’s energy security from 2008 to 2017 based on Fuzzy BWM-DEA-AR model and Malmquist Productivity Index," Energy, Elsevier, vol. 228(C).
    11. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Fadhl, Saeed Obaid, 2016. "Publics׳ knowledge, attitudes and behavioral toward the use of solar energy in Yemen power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 498-515.
    12. Sampene, Agyemang Kwasi & Li, Cai & Wiredu, John, 2024. "An outlook at the switch to renewable energy in emerging economies: The beneficial effect of technological innovation and green finance," Energy Policy, Elsevier, vol. 187(C).
    13. Kristiana Dolge & Dagnija Blumberga, 2023. "Transitioning to Clean Energy: A Comprehensive Analysis of Renewable Electricity Generation in the EU-27," Energies, MDPI, vol. 16(18), pages 1-27, September.
    14. Estiri, Hossein & Zagheni, Emilio, 2018. "Evaluating the Age-Energy Consumption Profile in Residential Buildings," SocArXiv yqkva, Center for Open Science.
    15. Adams, Michelle & Wheeler, David & Woolston, Genna, 2011. "A participatory approach to sustainable energy strategy development in a carbon-intensive jurisdiction: The case of Nova Scotia," Energy Policy, Elsevier, vol. 39(5), pages 2550-2559, May.
    16. Yan, Xiang & Xin, Boqing & Cheng, Changgao & Han, Zhiyong, 2024. "Unpacking energy consumption in China's urbanization: Industry development, population growth, and spatial expansion," Research in International Business and Finance, Elsevier, vol. 70(PA).
    17. Maria Cecilia P Moura & Steven J Smith & David B Belzer, 2015. "120 Years of U.S. Residential Housing Stock and Floor Space," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-18, August.
    18. Zhang, Hui & Zhou, Peng & Sun, Xiumei & Ni, Guanqun, 2024. "Disparities in energy efficiency and its determinants in Chinese cities: From the perspective of heterogeneity," Energy, Elsevier, vol. 289(C).
    19. Gilbert, Richard & Perl, Anthony, 2007. "Grid-connected vehicles as the core of future land-based transport systems," Energy Policy, Elsevier, vol. 35(5), pages 3053-3060, May.
    20. Rafael de Arce & Ramón Mahía, 2019. "Drivers of Electricity Poverty in Spanish Dwellings: A Quantile Regression Approach," Energies, MDPI, vol. 12(11), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5998-:d:1218187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.