IDEAS home Printed from https://ideas.repec.org/a/dem/demres/v43y2020i54.html
   My bibliography  Save this article

A spatial population downscaling model for integrated human-environment analysis in the United States

Author

Listed:
  • Hamidreza Zoraghein

    (Population Council)

  • Brian C. O'Neill

    (University of Denver)

Abstract

Background: Spatial population models are important to inform understanding of historical demographic development patterns and to project possible future changes, especially for use in anticipating environmental interactions. Objective: We document, calibrate, and evaluate a high-resolution gravity-based population downscaling model for each US state and interpret its historical urban and rural spatial population change patterns. Methods: We estimate two free parameters that govern the spatial population change pattern using the historical population grids of each state. We interpret the resulting parameters in light of the spatial development pattern they represent. We evaluate the model by comparing the resulting total population grid of each state in 2010 against its census-based grid. We also analyze the temporal stability of parameters across the 1990–2000 and 2000–2010 decades. Results: Our analysis indicates varying levels of performance across states and population types. While our results suggest a consolidated change pattern in urban population across states, rural population change patterns are diverse. We find urban parameters are more stable. Conclusions: The model’s adaptability, performance, and interpretability indicate its potential for depicting historical state-level spatial population changes. It assigns these changes to different representative categories to assist interpretation. Contribution: We document and evaluate a gravitational model as well as investigate historical state-level spatial population changes. This research facilitates future work creating projections of the spatial distribution of population at the subnational level, especially those according to the Shared Socioeconomic Pathways (SSPs), widely used scenarios for climate change research.

Suggested Citation

  • Hamidreza Zoraghein & Brian C. O'Neill, 2020. "A spatial population downscaling model for integrated human-environment analysis in the United States," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 43(54), pages 1563-1606.
  • Handle: RePEc:dem:demres:v:43:y:2020:i:54
    DOI: 10.4054/DemRes.2020.43.54
    as

    Download full text from publisher

    File URL: https://www.demographic-research.org/volumes/vol43/54/43-54.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.4054/DemRes.2020.43.54?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bryan Jones & Brian C. O’Neill & Larry McDaniel & Seth McGinnis & Linda O. Mearns & Claudia Tebaldi, 2015. "Future population exposure to US heat extremes," Nature Climate Change, Nature, vol. 5(7), pages 652-655, July.
    2. Weihua Dong & Zhao Liu & Hua Liao & Qiuhong Tang & Xian’en Li, 2015. "New climate and socio-economic scenarios for assessing global human health challenges due to heat risk," Climatic Change, Springer, vol. 130(4), pages 505-518, June.
    3. Reid Ewing & Fang Rong, 2008. "The impact of urban form on U.S. residential energy use," Housing Policy Debate, Taylor & Francis Journals, vol. 19(1), pages 1-30, January.
    4. Landis, John D., 1994. "The California Urban Futures Model: A New Generation of Metropolitan Simulation Models," University of California Transportation Center, Working Papers qt9pb6g3g6, University of California Transportation Center.
    5. John F McDonald, 2014. "What happened to and in Detroit?," Urban Studies, Urban Studies Journal Limited, vol. 51(16), pages 3309-3329, December.
    6. Raupach, M.R. & Rayner, P.J. & Paget, M., 2010. "Regional variations in spatial structure of nightlights, population density and fossil-fuel CO2 emissions," Energy Policy, Elsevier, vol. 38(9), pages 4756-4764, September.
    7. Barbara Neumann & Athanasios T Vafeidis & Juliane Zimmermann & Robert J Nicholls, 2015. "Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding - A Global Assessment," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-34, March.
    8. Flavio Lehner & Thomas F. Stocker, 2015. "From local perception to global perspective," Nature Climate Change, Nature, vol. 5(8), pages 731-734, August.
    9. Meiyappan, Prasanth & Dalton, Michael & O’Neill, Brian C. & Jain, Atul K., 2014. "Spatial modeling of agricultural land use change at global scale," Ecological Modelling, Elsevier, vol. 291(C), pages 152-174.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    2. Wilson, Thomas & Grossman, Irina & Alexander, Monica & Rees, Philip & Temple, Jeromey, 2021. "Methods for small area population forecasts: state-of-the-art and research needs," SocArXiv sp6me, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Bofeng & Zhang, Lixiao, 2014. "Urban CO2 emissions in China: Spatial boundary and performance comparison," Energy Policy, Elsevier, vol. 66(C), pages 557-567.
    2. Anna Marandi & Kelly Leilani Main, 2021. "Vulnerable City, recipient city, or climate destination? Towards a typology of domestic climate migration impacts in US cities," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 11(3), pages 465-480, September.
    3. Flavio Lehner & Clara Deser & Benjamin M. Sanderson, 2018. "Future risk of record-breaking summer temperatures and its mitigation," Climatic Change, Springer, vol. 146(3), pages 363-375, February.
    4. Bryan Jones & Claudia Tebaldi & Brian C. O’Neill & Keith Oleson & Jing Gao, 2018. "Avoiding population exposure to heat-related extremes: demographic change vs climate change," Climatic Change, Springer, vol. 146(3), pages 423-437, February.
    5. Hamidreza Zoraghein & Brian C. O’Neill, 2020. "U.S. State-level Projections of the Spatial Distribution of Population Consistent with Shared Socioeconomic Pathways," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    6. Wenzheng Li & Stephan Schmidt, 2024. "Can spatial patterns mitigate the urban heat island effect? Evidence from German metropolitan regions," Environment and Planning B, , vol. 51(8), pages 1948-1964, October.
    7. Anirban Mukhopadhyay & Sugata Hazra & Debasish Mitra & C. Hutton & Abhra Chanda & Sandip Mukherjee, 2016. "Characterizing the multi-risk with respect to plausible natural hazards in the Balasore coast, Odisha, India: a multi-criteria analysis (MCA) appraisal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1495-1513, February.
    8. Ravulaparthy, Srinath & Goulias, Konstadinos G., 2011. "Forecasting with Dynamic Microsimulation: Design, Implementation, and Demonstration," University of California Transportation Center, Working Papers qt2x12q5pv, University of California Transportation Center.
    9. Estiri, Hossein, 2014. "Building and household X-factors and energy consumption at the residential sector," Energy Economics, Elsevier, vol. 43(C), pages 178-184.
    10. Wang, Xueqi & Liu, Gengyuan & Coscieme, Luca & Giannetti, Biagio F. & Hao, Yan & Zhang, Yan & Brown, Mark T., 2019. "Study on the emergy-based thermodynamic geography of the Jing-Jin-Ji region: Combined multivariate statistical data with DMSP-OLS nighttime lights data," Ecological Modelling, Elsevier, vol. 397(C), pages 1-15.
    11. Abid Anwar & Mussawar Shah & Yasrab Abid & Zia Ul Qamar & Hina Qamar, 2018. "Consumer Importance on Sustainable Water Sanitation & Hygiene Facilities Provided in Rural District Peshawar, Pakistan," Journal of Social Science Studies, Macrothink Institute, vol. 5(1), pages 316-328, January.
    12. Lin, Yatang & McDermott, Thomas K.J. & Michaels, Guy, 2024. "Cities and the sea level," Journal of Urban Economics, Elsevier, vol. 143(C).
    13. Su, Yongxian & Chen, Xiuzhi & Li, Yong & Liao, Jishan & Ye, Yuyao & Zhang, Hongou & Huang, Ningsheng & Kuang, Yaoqiu, 2014. "China׳s 19-year city-level carbon emissions of energy consumptions, driving forces and regionalized mitigation guidelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 231-243.
    14. Domingues, Rita & Costas, Susana & Jesus, Saul & Ferreira, Óscar, 2017. "SENSE OF PLACE, RISK PERCEPTIONS AND PREPAREDNESS OF A COASTAL POPULATION AT RISK (Faro Beach, Portugal): A qualitative content analysis," Journal of Tourism, Sustainability and Well-being, Cinturs - Research Centre for Tourism, Sustainability and Well-being, University of Algarve, vol. 5(3), pages 163-175.
    15. Joseph L.-H. Tsui & Rosario Evans Pena & Monika Moir & Rhys P. D. Inward & Eduan Wilkinson & James Emmanuel San & Jenicca Poongavanan & Sumali Bajaj & Bernardo Gutierrez & Abhishek Dasgupta & Tulio Ol, 2024. "Impacts of climate change-related human migration on infectious diseases," Nature Climate Change, Nature, vol. 14(8), pages 793-802, August.
    16. Zhang, Junyi & Teng, Fei & Zhou, Shaojie, 2020. "The structural changes and determinants of household energy choices and energy consumption in urban China: Addressing the role of building type," Energy Policy, Elsevier, vol. 139(C).
    17. Weiguo Liu & Karen C Seto, 2008. "Using the ART-MMAP Neural Network to Model and Predict Urban Growth: A Spatiotemporal Data Mining Approach," Environment and Planning B, , vol. 35(2), pages 296-317, April.
    18. Bereitschaft, Bradley, 2020. "Gentrification and the evolution of commuting behavior within America's urban cores, 2000–2015," Journal of Transport Geography, Elsevier, vol. 82(C).
    19. Zhibin Yang & Robert Stachler & Joshua S. Heyne, 2020. "Orthogonal Reference Surrogate Fuels for Operability Testing," Energies, MDPI, vol. 13(8), pages 1-13, April.
    20. Guiyu Chen & Chaosu Li, 2023. "The changing dynamics of population exposure to extreme heat in the contiguous United States from 2001 to 2020," Environment and Planning B, , vol. 50(7), pages 1998-2001, September.

    More about this item

    Keywords

    uncertainty; spatial downscaling; gravity-based modelling; human-environment analysis; population distribution; spatial population dynamics;
    All these keywords.

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dem:demres:v:43:y:2020:i:54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Editorial Office (email available below). General contact details of provider: https://www.demogr.mpg.de/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.