Author
Abstract
Some of the most important phenomena in international conflict are coded as “rare events”: binary dependent variables with dozens to thousands of times fewer events, such as wars and coups, than “nonevents.” Unfortunately, rare events data are difficult to explain and predict, a problem stemming from at least two sources. First, and most important, the data-collection strategies used in international conflict studies are grossly inefficient. The fear of collecting data with too few events has led to data collections with huge numbers of observations but relatively few, and poorly measured, explanatory variables. As it turns out, more efficient sampling designs exist for making valid inferences, such as sampling all available events (wars, for example) and a tiny fraction of nonevents (peace). This enables scholars to save as much as 99 percent of their (nonfixed) data-collection costs or to collect much more meaningful explanatory variables. Second, logistic regression, and other commonly used statistical procedures, can underestimate the probability of rare events. We introduce some corrections that outperform existing methods and change the estimates of absolute and relative risks by as much as some estimated effects reported in the literature. We also provide easy-to-use methods and software that link these two results, enabling both types of corrections to work simultaneously.
Suggested Citation
King, Gary & Zeng, Langche, 2001.
"Explaining Rare Events in International Relations,"
International Organization, Cambridge University Press, vol. 55(3), pages 693-715, July.
Handle:
RePEc:cup:intorg:v:55:y:2001:i:03:p:693-715_44
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:intorg:v:55:y:2001:i:03:p:693-715_44. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ino .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.