IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v70y2024i11id318-2024-pse.html
   My bibliography  Save this article

Denitrification and Anammox and Feammox in the Yinchuan Yellow River wetland

Author

Listed:
  • Qingsong Guan

    (Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China; Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan, P.R. China
    College of Application of Engineering, Henan University of Science and Technology, Sanmenxia, P.R. China
    Engineering Technology Research Center of Sanmenxia Yellow River Wetland Environmental Process and Ecological Restoration, Sanmenxia, P.R. China)

  • Yiqiao Zhou

    (College of Application of Engineering, Henan University of Science and Technology, Sanmenxia, P.R. China
    Engineering Technology Research Center of Sanmenxia Yellow River Wetland Environmental Process and Ecological Restoration, Sanmenxia, P.R. China)

  • Shuo Li

    (College of Application of Engineering, Henan University of Science and Technology, Sanmenxia, P.R. China
    Engineering Technology Research Center of Sanmenxia Yellow River Wetland Environmental Process and Ecological Restoration, Sanmenxia, P.R. China)

  • Fan Yang

    (College of Application of Engineering, Henan University of Science and Technology, Sanmenxia, P.R. China
    Engineering Technology Research Center of Sanmenxia Yellow River Wetland Environmental Process and Ecological Restoration, Sanmenxia, P.R. China)

  • Rentao Liu

    (Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China; Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan, P.R. China)

Abstract

Denitrification, anaerobic ammonium oxidation (Anammox), and ferric iron reduction coupled with anaerobic ammonium oxidation (Feammox) are the nitrogen removal pathways in natural ecosystems. In this study, the differences between these three nitrogen removal pathways in a Phragmites australis covered site (LW), artificial grassland covered site (CD), poplar covered site (YD), and topsoil tillage after harvesting reed site (GD) in the Yinchuan Yellow River wetland were investigated using isotope tracing, metagenome, and quantitative polymerase chain reaction (Q-PCR) techniques. No 30N2 accumulation was detected in 15NH4+ addition incubations, indicating that Feammox was weak in all sites, which is consistent with a low abundance of the Feammox functional bacteria Acidimiprobiaceae sp. A6. The denitrification rates were 0.36 (LW), 0.5 (CD), 0.76 (YD) and 0.12 (GD) mg N/kg/day. The Anammox rates were 0.18 (LW) and 0.26 (GD) mg N/kg/day; other sites did not detect Anammox rate. Denitrification was the dominant pathway except for the CD site. The YD site had the highest abundance of denitrification genes, which was consistent with the denitrification rate.

Suggested Citation

  • Qingsong Guan & Yiqiao Zhou & Shuo Li & Fan Yang & Rentao Liu, 2024. "Denitrification and Anammox and Feammox in the Yinchuan Yellow River wetland," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(11), pages 731-738.
  • Handle: RePEc:caa:jnlpse:v:70:y:2024:i:11:id:318-2024-pse
    DOI: 10.17221/318/2024-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/318/2024-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/318/2024-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/318/2024-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicolas Gruber & James N. Galloway, 2008. "An Earth-system perspective of the global nitrogen cycle," Nature, Nature, vol. 451(7176), pages 293-296, January.
    2. Tage Dalsgaard & Donald E. Canfield & Jan Petersen & Bo Thamdrup & Jenaro Acuña-González, 2003. "N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica," Nature, Nature, vol. 422(6932), pages 606-608, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen Yuan & Shaobing Peng, 2017. "Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    2. Keikha, Mahdi & Darzi- Naftchali, Abdullah & Motevali, Ali & Valipour, Mohammad, 2023. "Effect of nitrogen management on the environmental and economic sustainability of wheat production in different climates," Agricultural Water Management, Elsevier, vol. 276(C).
    3. Auguères, Anne-Sophie & Loreau, Michel, 2016. "Biotic regulation of non-limiting nutrient pools and coupling of biogeochemical cycles," Ecological Modelling, Elsevier, vol. 334(C), pages 1-7.
    4. Xiaochen Lu & Binjie Li & Guangsheng Chen, 2023. "Responses of Soil CO 2 Emission and Tree Productivity to Nitrogen and Phosphorus Additions in a Nitrogen-Rich Subtropical Chinese Fir Plantation," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    5. Florian Rabitz & Alin Olteanu & Jurgita Jurkevičienė & Agnė Budžytė, 2021. "A topic network analysis of the system turn in the environmental sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2107-2140, March.
    6. Chengpeng Zhang & Yu Ye & Xiuqi Fang & Hansunbai Li & Xue Zheng, 2020. "Coincidence Analysis of the Cropland Distribution of Multi-Sets of Global Land Cover Products," IJERPH, MDPI, vol. 17(3), pages 1-17, January.
    7. Sangha, Laljeet & Shortridge, Julie & Frame, William, 2023. "The impact of nitrogen treatment and short-term weather forecast data in irrigation scheduling of corn and cotton on water and nutrient use efficiency in humid climates," Agricultural Water Management, Elsevier, vol. 283(C).
    8. Jie Zhang & Jia Liu & Guilong Li & Meng Wu, 2024. "Screening Potential Nitrification Inhibitors through a Structure–Activity Relationship Study—The Case of Cinnamic Acid Derivatives," Sustainability, MDPI, vol. 16(13), pages 1-10, July.
    9. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "An analysis of global terrestrial carbon, water and energy dynamics using the carbon–nitrogen coupled CLASS-CTEMN+ model," Ecological Modelling, Elsevier, vol. 336(C), pages 36-56.
    10. L.J. Li & D.H. Zeng & R. Mao & Z.Y. Yu, 2012. "Nitrogen and phosphorus resorption of Artemisia scoparia, Chenopodium acuminatum, Cannabis sativa, and Phragmites communis under nitrogen and phosphorus additions in a semiarid grassland, China," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 58(10), pages 446-451.
    11. Yusen Chen & Shihang Zhang & Yongdong Wang, 2022. "Distribution Characteristics and Drivers of Soil Carbon and Nitrogen in the Drylands of Central Asia," Land, MDPI, vol. 11(10), pages 1-12, October.
    12. Charles A. Taylor & Geoffrey Heal, 2021. "Fertilizer and Algal Blooms: A Satellite Approach to Assessing Water Quality," NBER Chapters, in: Risks in Agricultural Supply Chains, pages 83-105, National Bureau of Economic Research, Inc.
    13. Chen, Minpeng & Sun, Fu & Shindo, Junko, 2016. "China’s agricultural nitrogen flows in 2011: Environmental assessment and management scenarios," Resources, Conservation & Recycling, Elsevier, vol. 111(C), pages 10-27.
    14. Rong Zhang & Chuan Li & Huilin Cui & Yanbo Wang & Shaoce Zhang & Pei Li & Yue Hou & Ying Guo & Guojin Liang & Zhaodong Huang & Chao Peng & Chunyi Zhi, 2023. "Electrochemical nitrate reduction in acid enables high-efficiency ammonia synthesis and high-voltage pollutes-based fuel cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Smith, Nicola J & McDonald, Garry W & Patterson, Murray G, 2020. "Biogeochemical cycling in the anthropocene: Quantifying global environment-economy exchanges," Ecological Modelling, Elsevier, vol. 418(C).
    16. Gu, Baojing & Liu, Dong & Wu, Xu & Ge, Ying & Min, Yong & Jiang, Hong & Chang, Jie, 2011. "Utilization of waste nitrogen for biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4910-4916.
    17. Zhen-Zhen Zheng & Li-Wei Zheng & Min Nina Xu & Ehui Tan & David A. Hutchins & Wenchao Deng & Yao Zhang & Dalin Shi & Minhan Dai & Shuh-Ji Kao, 2020. "Substrate regulation leads to differential responses of microbial ammonia-oxidizing communities to ocean warming," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    18. Barakat, Mohammad & Cheviron, Bruno & Angulo-Jaramillo, Rafael, 2016. "Influence of the irrigation technique and strategies on the nitrogen cycle and budget: A review," Agricultural Water Management, Elsevier, vol. 178(C), pages 225-238.
    19. Douglas, Niall Edward, 2008. "Modelling the Costs of Climate Change and its Costs of Mitigation: A Scientific Approach," MPRA Paper 13650, University Library of Munich, Germany.
    20. Stops, Marven W. & Sullivan, Pamela L. & Peltier, Edward & Young, Bryan & Brookfield, Andrea E., 2022. "Tracking the hydrologic response of agricultural tile outlet terraces to storm events," Agricultural Water Management, Elsevier, vol. 263(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:70:y:2024:i:11:id:318-2024-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.