IDEAS home Printed from https://ideas.repec.org/a/caa/jnljfs/v63y2017i9id125-2016-jfs.html
   My bibliography  Save this article

Modelling and mapping of soil damage caused by harvesting in Caspian forests (Iran) using CART and RF data mining techniques

Author

Listed:
  • Saeid SHABANI

Abstract

Controlling the soil damage caused by forest harvesting has a key role in forest management due to its effect on forest dynamics and productivity, mainly through modifying the physical, mechanical, and hydrological context of soil. This study was conducted to evaluate the soil damage susceptibility in one of the Caspian forests, Iran. For this purpose, two data mining techniques including classification and regression tree (CART) and random forest (RF) were applied. A total of 224 soil damage locations were identified primarily from field surveys. Then, 10 conditioning variables were produced in GIS. For model performance, the outputs of the analyses were compared with the field-verified soil damage locations. Our results show that slope degree, soil type, and slope aspect had the highest weight on soil damage, in the order of their appurtenance. Additionally, according to the relative operating characteristics curve, RF is a more suitable prediction model for soil damage zoning compared to CART. In summary, the findings of this study suggest that soil damage susceptibility mapping is an effective technique for Caspian forests, Iran.

Suggested Citation

  • Saeid SHABANI, 2017. "Modelling and mapping of soil damage caused by harvesting in Caspian forests (Iran) using CART and RF data mining techniques," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 63(9), pages 425-432.
  • Handle: RePEc:caa:jnljfs:v:63:y:2017:i:9:id:125-2016-jfs
    DOI: 10.17221/125/2016-JFS
    as

    Download full text from publisher

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/125/2016-JFS.html
    Download Restriction: free of charge

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/125/2016-JFS.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/125/2016-JFS?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. van Westen & N. Rengers & R. Soeters, 2003. "Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 399-419, November.
    2. Peters, Jan & Baets, Bernard De & Verhoest, Niko E.C. & Samson, Roeland & Degroeve, Sven & Becker, Piet De & Huybrechts, Willy, 2007. "Random forests as a tool for ecohydrological distribution modelling," Ecological Modelling, Elsevier, vol. 207(2), pages 304-318.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoxiao Ju & Junjie Li & Chongxiang Sun & Bo Li, 2024. "Landslide Susceptibility Assessment Using a CNN–BiLSTM-AM Model," Sustainability, MDPI, vol. 16(21), pages 1-24, October.
    2. Yikalo H. Araya & Tarmo K. Remmel & Ajith H. Perera, 2016. "What governs the presence of residual vegetation in boreal wildfires?," Journal of Geographical Systems, Springer, vol. 18(2), pages 159-181, April.
    3. Cristina Tarantino & Palma Blonda & Guido Pasquariello, 2007. "Remote sensed data for automatic detection of land-use changes due to human activity in support to landslide studies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(1), pages 245-267, April.
    4. Sarah Mittlefehldt & Erin Bunting & Emily Huff & Joseph Welsh & Robert Goodwin, 2021. "New Methods for Assessing Sustainability of Wood-Burning Energy Facilities: Combining Historical and Spatial Approaches," Energies, MDPI, vol. 14(23), pages 1-18, November.
    5. Hyo-sub Kang & Yun-tae Kim, 2016. "The physical vulnerability of different types of building structure to debris flow events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1475-1493, February.
    6. Sachin Kumar & T. Gopi & N. Harikeerthana & Munish Kumar Gupta & Vidit Gaur & Grzegorz M. Krolczyk & ChuanSong Wu, 2023. "Machine learning techniques in additive manufacturing: a state of the art review on design, processes and production control," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 21-55, January.
    7. Seyed Naghibi & Hamid Pourghasemi, 2015. "A Comparative Assessment Between Three Machine Learning Models and Their Performance Comparison by Bivariate and Multivariate Statistical Methods in Groundwater Potential Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5217-5236, November.
    8. Žiga Malek & Veronica Zumpano & Haydar Hussin, 2018. "Forest management and future changes to ecosystem services in the Romanian Carpathians," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1275-1291, June.
    9. Netra Bhandary & Ranjan Dahal & Manita Timilsina & Ryuichi Yatabe, 2013. "Rainfall event-based landslide susceptibility zonation mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 365-388, October.
    10. Bemah Ibrahim & Isaac Ahenkorah & Anthony Ewusi, 2022. "Explainable Risk Assessment of Rockbolts’ Failure in Underground Coal Mines Based on Categorical Gradient Boosting and SHapley Additive exPlanations (SHAP)," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    11. Dthenifer Cordeiro Santana & Regimar Garcia dos Santos & Pedro Henrique Neves da Silva & Hemerson Pistori & Larissa Pereira Ribeiro Teodoro & Nerison Luis Poersch & Gileno Brito de Azevedo & Glauce Ta, 2023. "Machine Learning Methods for Woody Volume Prediction in Eucalyptus," Sustainability, MDPI, vol. 15(14), pages 1-11, July.
    12. Ashraf Abdelkarim & Ahmed F. D. Gaber & Ibtesam I. Alkadi & Haya M. Alogayell, 2019. "Integrating Remote Sensing and Hydrologic Modeling to Assess the Impact of Land-Use Changes on the Increase of Flood Risk: A Case Study of the Riyadh–Dammam Train Track, Saudi Arabia," Sustainability, MDPI, vol. 11(21), pages 1-32, October.
    13. Paúl Carrión-Mero & Néstor Montalván-Burbano & Fernando Morante-Carballo & Adolfo Quesada-Román & Boris Apolo-Masache, 2021. "Worldwide Research Trends in Landslide Science," IJERPH, MDPI, vol. 18(18), pages 1-24, September.
    14. C. Abdallah & G. Faour, 2017. "Landslide hazard mapping of Ibrahim River Basin, Lebanon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 237-266, January.
    15. Nikolaos Tavoularis & George Papathanassiou & Athanassios Ganas & Panagiotis Argyrakis, 2021. "Development of the Landslide Susceptibility Map of Attica Region, Greece, Based on the Method of Rock Engineering System," Land, MDPI, vol. 10(2), pages 1-31, February.
    16. Vanesa Mateo-Pérez & Marina Corral-Bobadilla & Francisco Ortega-Fernández & Vicente Rodríguez-Montequín, 2021. "Determination of Water Depth in Ports Using Satellite Data Based on Machine Learning Algorithms," Energies, MDPI, vol. 14(9), pages 1-22, April.
    17. Massimo Conforti & Gaetano Robustelli & Francesco Muto & Salvatore Critelli, 2012. "Application and validation of bivariate GIS-based landslide susceptibility assessment for the Vitravo river catchment (Calabria, south Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 127-141, March.
    18. Pratap Ram & Vikram Gupta, 2022. "Landslide hazard, vulnerability, and risk assessment (HVRA), Mussoorie township, lesser himalaya, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 473-501, January.
    19. Ananta Pradhan & Yun-Tae Kim, 2014. "Relative effect method of landslide susceptibility zonation in weathered granite soil: a case study in Deokjeok-ri Creek, South Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 1189-1217, June.
    20. Jun-Mao Liao & Ming-Jui Chang & Luh-Maan Chang, 2020. "Prediction of Air-Conditioning Energy Consumption in R&D Building Using Multiple Machine Learning Techniques," Energies, MDPI, vol. 13(7), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnljfs:v:63:y:2017:i:9:id:125-2016-jfs. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.