IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i1d10.1007_s10668-021-01449-2.html
   My bibliography  Save this article

Landslide hazard, vulnerability, and risk assessment (HVRA), Mussoorie township, lesser himalaya, India

Author

Listed:
  • Pratap Ram

    (Wadia Institute of Himalayan Geology)

  • Vikram Gupta

    (Wadia Institute of Himalayan Geology)

Abstract

In the present study, landslide hazard, vulnerability and the risk assessment of the Himalayan township Mussoorie, located in the lower part of the Lesser Himalaya has been undertaken. The area famous for tourism constitutes > 7000 buildings with ~ 30,000 habitations. Four bivariate statistical approaches viz. Weight of evidence (WoE), Frequency ratio (FR), Yule Coefficient (YC), and Information Value (InV) were used for landslide hazard assessment, and all these approaches with 75%—80% success and predication rate are found to be acceptable for landslide hazard mapping. The analyses indicate that the Nagar Palika Parisad ward, Library ward, Happy valley ward and Bhadraj ward exhibit the maximum area falling under the high and very high landslide hazard zones, whereas Landaur ward, Jalkii ward and Indra Colony ward exhibit a greater part of the area in the low and very low hazard zones. On the basis of the six elements at risk present in the study area viz. settlement, crop land, water body, roads, barren and degraded land, and dense forest, the ~ 40% of the area is very high and high vulnerable, ~ 11% moderate, and ~ 49% is low and very low vulnerable. High and very high vulnerable zones are located in the west and central portion mainly because of higher habitation and more anthropogenic activities. Finally, risk map prepared intersecting hazard and vulnerability maps exhibits that Nagar Palika Parisad ward has the largest part (~ 41%) of the area with 37% buildings falling in the high and very high risk zones, whereas the Landour ward is the safest ward having ~ 83% area in the low and very low risk. Overall ~ 1604 buildings with habitation of ~ 8,000 persons in the township, are prone to high and very high landslide risk. The results of this study may be utilized for further development and planning in the area.

Suggested Citation

  • Pratap Ram & Vikram Gupta, 2022. "Landslide hazard, vulnerability, and risk assessment (HVRA), Mussoorie township, lesser himalaya, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 473-501, January.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:1:d:10.1007_s10668-021-01449-2
    DOI: 10.1007/s10668-021-01449-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01449-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01449-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vikram Gupta & Rajinder K. Bhasin & Amir M. Kaynia & Ruchika Sharma Tandon & B. Venkateshwarlu, 2016. "Landslide Hazard in the Nainital township, Kumaun Himalaya, India: the case of September 2014 Balia Nala landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 863-877, January.
    2. Vikram Gupta & Rajinder Bhasin & Amir Kaynia & Ruchika Tandon & B. Venkateshwarlu, 2016. "Landslide Hazard in the Nainital township, Kumaun Himalaya, India: the case of September 2014 Balia Nala landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 863-877, January.
    3. Javeria Saleem & Sheikh Saeed Ahmad & Amna Butt, 2020. "Hazard risk assessment of landslide-prone sub-Himalayan region by employing geospatial modeling approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1497-1514, July.
    4. C. van Westen & N. Rengers & R. Soeters, 2003. "Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 399-419, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yimin Li & Xuanlun Deng & Peikun Ji & Yiming Yang & Wenxue Jiang & Zhifang Zhao, 2022. "Evaluation of Landslide Susceptibility Based on CF-SVM in Nujiang Prefecture," IJERPH, MDPI, vol. 19(21), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zohre Hoseinzade & Asal Zavarei & Kourosh Shirani, 2021. "Application of prediction–area plot in the assessment of MCDM methods through VIKOR, PROMETHEE II, and permutation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2489-2507, December.
    2. Liangchen Yu & Changhong Yan & Shulan Guo & Hui Li & Jinzhong Tan & Gang Liu & Chenghua Xu & Yang Liu, 2023. "Mechanism analysis of Zulongding landslide on gentle piedmont slope: a creeping landslide triggered by rainfall," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1211-1234, September.
    3. Jaydip Dey & Saurabh Sakhre & Ritesh Vijay & Hemant Bherwani & Rakesh Kumar, 2021. "Geospatial assessment of urban sprawl and landslide susceptibility around the Nainital lake, Uttarakhand, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3543-3561, March.
    4. Krishna Devkota & Amar Regmi & Hamid Pourghasemi & Kohki Yoshida & Biswajeet Pradhan & In Ryu & Megh Dhital & Omar Althuwaynee, 2013. "Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 135-165, January.
    5. Maria Karpouza & Konstantinos Chousianitis & George D. Bathrellos & Hariklia D. Skilodimou & George Kaviris & Assimina Antonarakou, 2021. "Hazard zonation mapping of earthquake-induced secondary effects using spatial multi-criteria analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 637-669, October.
    6. Wenchao Huangfu & Haijun Qiu & Weicheng Wu & Yaozu Qin & Xiaoting Zhou & Yang Zhang & Mohib Ullah & Yanfen He, 2024. "Enhancing the Performance of Landslide Susceptibility Mapping with Frequency Ratio and Gaussian Mixture Model," Land, MDPI, vol. 13(7), pages 1-27, July.
    7. Hyo-sub Kang & Yun-tae Kim, 2016. "The physical vulnerability of different types of building structure to debris flow events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1475-1493, February.
    8. Xiaoxiao Ju & Junjie Li & Chongxiang Sun & Bo Li, 2024. "Landslide Susceptibility Assessment Using a CNN–BiLSTM-AM Model," Sustainability, MDPI, vol. 16(21), pages 1-24, October.
    9. Iuliana Armaş, 2012. "Weights of evidence method for landslide susceptibility mapping. Prahova Subcarpathians, Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 937-950, February.
    10. Cristina Tarantino & Palma Blonda & Guido Pasquariello, 2007. "Remote sensed data for automatic detection of land-use changes due to human activity in support to landslide studies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(1), pages 245-267, April.
    11. Vladyslav Zakharovskyi & Károly Németh, 2021. "Quantitative-Qualitative Method for Quick Assessment of Geodiversity," Land, MDPI, vol. 10(9), pages 1-21, September.
    12. Hyo-sub Kang & Yun-tae Kim, 2016. "The physical vulnerability of different types of building structure to debris flow events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1475-1493, February.
    13. Chong Xu & Xiwei Xu & Fuchu Dai & Zhide Wu & Honglin He & Feng Shi & Xiyan Wu & Suning Xu, 2013. "Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 883-900, September.
    14. Paolo Magliulo & Antonio Di Lisio & Filippo Russo & Antonio Zelano, 2008. "Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: a case study in southern Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(3), pages 411-435, December.
    15. Anik Saha & Sunil Saha, 2021. "Application of statistical probabilistic methods in landslide susceptibility assessment in Kurseong and its surrounding area of Darjeeling Himalayan, India: RS-GIS approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4453-4483, March.
    16. Žiga Malek & Veronica Zumpano & Haydar Hussin, 2018. "Forest management and future changes to ecosystem services in the Romanian Carpathians," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1275-1291, June.
    17. Netra Bhandary & Ranjan Dahal & Manita Timilsina & Ryuichi Yatabe, 2013. "Rainfall event-based landslide susceptibility zonation mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 365-388, October.
    18. Anna Roccati & Guido Paliaga & Fabio Luino & Francesco Faccini & Laura Turconi, 2021. "GIS-Based Landslide Susceptibility Mapping for Land Use Planning and Risk Assessment," Land, MDPI, vol. 10(2), pages 1-28, February.
    19. Ashraf Abdelkarim & Ahmed F. D. Gaber & Ibtesam I. Alkadi & Haya M. Alogayell, 2019. "Integrating Remote Sensing and Hydrologic Modeling to Assess the Impact of Land-Use Changes on the Increase of Flood Risk: A Case Study of the Riyadh–Dammam Train Track, Saudi Arabia," Sustainability, MDPI, vol. 11(21), pages 1-32, October.
    20. Paúl Carrión-Mero & Néstor Montalván-Burbano & Fernando Morante-Carballo & Adolfo Quesada-Román & Boris Apolo-Masache, 2021. "Worldwide Research Trends in Landslide Science," IJERPH, MDPI, vol. 18(18), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:1:d:10.1007_s10668-021-01449-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.