IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i1d10.1007_s10668-021-01449-2.html
   My bibliography  Save this article

Landslide hazard, vulnerability, and risk assessment (HVRA), Mussoorie township, lesser himalaya, India

Author

Listed:
  • Pratap Ram

    (Wadia Institute of Himalayan Geology)

  • Vikram Gupta

    (Wadia Institute of Himalayan Geology)

Abstract

In the present study, landslide hazard, vulnerability and the risk assessment of the Himalayan township Mussoorie, located in the lower part of the Lesser Himalaya has been undertaken. The area famous for tourism constitutes > 7000 buildings with ~ 30,000 habitations. Four bivariate statistical approaches viz. Weight of evidence (WoE), Frequency ratio (FR), Yule Coefficient (YC), and Information Value (InV) were used for landslide hazard assessment, and all these approaches with 75%—80% success and predication rate are found to be acceptable for landslide hazard mapping. The analyses indicate that the Nagar Palika Parisad ward, Library ward, Happy valley ward and Bhadraj ward exhibit the maximum area falling under the high and very high landslide hazard zones, whereas Landaur ward, Jalkii ward and Indra Colony ward exhibit a greater part of the area in the low and very low hazard zones. On the basis of the six elements at risk present in the study area viz. settlement, crop land, water body, roads, barren and degraded land, and dense forest, the ~ 40% of the area is very high and high vulnerable, ~ 11% moderate, and ~ 49% is low and very low vulnerable. High and very high vulnerable zones are located in the west and central portion mainly because of higher habitation and more anthropogenic activities. Finally, risk map prepared intersecting hazard and vulnerability maps exhibits that Nagar Palika Parisad ward has the largest part (~ 41%) of the area with 37% buildings falling in the high and very high risk zones, whereas the Landour ward is the safest ward having ~ 83% area in the low and very low risk. Overall ~ 1604 buildings with habitation of ~ 8,000 persons in the township, are prone to high and very high landslide risk. The results of this study may be utilized for further development and planning in the area.

Suggested Citation

  • Pratap Ram & Vikram Gupta, 2022. "Landslide hazard, vulnerability, and risk assessment (HVRA), Mussoorie township, lesser himalaya, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 473-501, January.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:1:d:10.1007_s10668-021-01449-2
    DOI: 10.1007/s10668-021-01449-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01449-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01449-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Javeria Saleem & Sheikh Saeed Ahmad & Amna Butt, 2020. "Hazard risk assessment of landslide-prone sub-Himalayan region by employing geospatial modeling approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1497-1514, July.
    2. C. van Westen & N. Rengers & R. Soeters, 2003. "Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 399-419, November.
    3. Vikram Gupta & Rajinder Bhasin & Amir Kaynia & Ruchika Tandon & B. Venkateshwarlu, 2016. "Landslide Hazard in the Nainital township, Kumaun Himalaya, India: the case of September 2014 Balia Nala landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 863-877, January.
    4. Vikram Gupta & Rajinder K. Bhasin & Amir M. Kaynia & Ruchika Sharma Tandon & B. Venkateshwarlu, 2016. "Landslide Hazard in the Nainital township, Kumaun Himalaya, India: the case of September 2014 Balia Nala landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 863-877, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yimin Li & Xuanlun Deng & Peikun Ji & Yiming Yang & Wenxue Jiang & Zhifang Zhao, 2022. "Evaluation of Landslide Susceptibility Based on CF-SVM in Nujiang Prefecture," IJERPH, MDPI, vol. 19(21), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zohre Hoseinzade & Asal Zavarei & Kourosh Shirani, 2021. "Application of prediction–area plot in the assessment of MCDM methods through VIKOR, PROMETHEE II, and permutation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2489-2507, December.
    2. Jaydip Dey & Saurabh Sakhre & Ritesh Vijay & Hemant Bherwani & Rakesh Kumar, 2021. "Geospatial assessment of urban sprawl and landslide susceptibility around the Nainital lake, Uttarakhand, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3543-3561, March.
    3. Liangchen Yu & Changhong Yan & Shulan Guo & Hui Li & Jinzhong Tan & Gang Liu & Chenghua Xu & Yang Liu, 2023. "Mechanism analysis of Zulongding landslide on gentle piedmont slope: a creeping landslide triggered by rainfall," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1211-1234, September.
    4. Hyo-sub Kang & Yun-tae Kim, 2016. "The physical vulnerability of different types of building structure to debris flow events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1475-1493, February.
    5. Paúl Carrión-Mero & Néstor Montalván-Burbano & Fernando Morante-Carballo & Adolfo Quesada-Román & Boris Apolo-Masache, 2021. "Worldwide Research Trends in Landslide Science," IJERPH, MDPI, vol. 18(18), pages 1-24, September.
    6. K. Sajinkumar & S. Anbazhagan, 2015. "Geomorphic appraisal of landslides on the windward slope of Western Ghats, southern India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 953-973, January.
    7. Danang Hadmoko & Franck Lavigne & Junun Sartohadi & Pramono Hadi & Winaryo, 2010. "Landslide hazard and risk assessment and their application in risk management and landuse planning in eastern flank of Menoreh Mountains, Yogyakarta Province, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(3), pages 623-642, September.
    8. Paul Sestraș & Ștefan Bilașco & Sanda Roșca & Sanda Naș & Mircea V. Bondrea & Raluca Gâlgău & Ioel Vereș & Tudor Sălăgean & Velibor Spalević & Sorin M. Cîmpeanu, 2019. "Landslides Susceptibility Assessment Based on GIS Statistical Bivariate Analysis in the Hills Surrounding a Metropolitan Area," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    9. Khabat Khosravi & Ebrahim Nohani & Edris Maroufinia & Hamid Reza Pourghasemi, 2016. "A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making techn," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 947-987, September.
    10. Paola Gattinoni, 2009. "Parametrical landslide modeling for the hydrogeological susceptibility assessment: from the Crati Valley to the Cavallerizzo landslide (Southern Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(1), pages 161-178, July.
    11. Gao Hua-xi & Yin Kun-long, 2014. "Study on spatial prediction and time forecast of landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(3), pages 1735-1748, February.
    12. Danang Sri Hadmoko & Franck Lavigne & Guruh Samodra, 2017. "Application of a semiquantitative and GIS-based statistical model to landslide susceptibility zonation in Kayangan Catchment, Java, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 437-468, May.
    13. Ginés Suárez & María José Domínguez-Cuesta, 2021. "Improving landslide susceptibility predictive power through colluvium mapping in Tegucigalpa, Honduras," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 47-66, January.
    14. Uzodigwe Emmanuel Nnanwuba & Shengwu Qin & Oluwafemi Adewole Adeyeye & Ndichie Chinemelu Cosmas & Jingyu Yao & Shuangshuang Qiao & Sun Jingbo & Ekene Mathew Egwuonwu, 2022. "Prediction of Spatial Likelihood of Shallow Landslide Using GIS-Based Machine Learning in Awgu, Southeast/Nigeria," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    15. Krishna Devkota & Amar Regmi & Hamid Pourghasemi & Kohki Yoshida & Biswajeet Pradhan & In Ryu & Megh Dhital & Omar Althuwaynee, 2013. "Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 135-165, January.
    16. Maria Karpouza & Konstantinos Chousianitis & George D. Bathrellos & Hariklia D. Skilodimou & George Kaviris & Assimina Antonarakou, 2021. "Hazard zonation mapping of earthquake-induced secondary effects using spatial multi-criteria analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 637-669, October.
    17. Wenchao Huangfu & Haijun Qiu & Weicheng Wu & Yaozu Qin & Xiaoting Zhou & Yang Zhang & Mohib Ullah & Yanfen He, 2024. "Enhancing the Performance of Landslide Susceptibility Mapping with Frequency Ratio and Gaussian Mixture Model," Land, MDPI, vol. 13(7), pages 1-27, July.
    18. Chong Xu & Xiwei Xu & Fuchu Dai & Zhide Wu & Honglin He & Feng Shi & Xiyan Wu & Suning Xu, 2013. "Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 883-900, September.
    19. Paolo Magliulo & Antonio Di Lisio & Filippo Russo & Antonio Zelano, 2008. "Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: a case study in southern Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(3), pages 411-435, December.
    20. Anik Saha & Sunil Saha, 2021. "Application of statistical probabilistic methods in landslide susceptibility assessment in Kurseong and its surrounding area of Darjeeling Himalayan, India: RS-GIS approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4453-4483, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:1:d:10.1007_s10668-021-01449-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.