IDEAS home Printed from https://ideas.repec.org/a/caa/jnljfs/v63y2017i6id130-2016-jfs.html
   My bibliography  Save this article

The influence of deforestation and anthropogenic activities on runoff generation

Author

Listed:
  • Mohammad Reza KHALEGHI

Abstract

In recent decades, due to rapid human population increases and in its results, destructive effects of anthropogenic activities on natural resources have become a great challenge. Land use and vegetation are important factors in soil erosion and runoff generation. This study was performed to assess the effects of different amounts of forest cover on the control of runoff and soil loss in the Talar basin, which is located in Mazandaran province, using a runoffrainfall model, geographical information system (GIS) and remote sensing (RS) to determine the hydrologic effects of deforestation on the Talar watershed (north of Iran). A runoff-rainfall model has been presented using GIS (HECGeoHMS) and hydrologic model (HEC-HMS). Land use changes (deforestation) and anthropogenic activities (roads and impervious surfaces development) were evaluated using RS techniques and satellite images. We used the Soil Conservation Service and Curve Number methods for hydrograph simulation and runoff estimation, respectively. First, a model was performed and optimized. Afterward, the optimized model was evaluated by other six events of floods (model validation). According to the obtained results, the runoff generation potential has been increased in the Talar watershed due to deforestation during the last forty years. Land use changes cause an increase in runoff volume and flood peak discharge.

Suggested Citation

  • Mohammad Reza KHALEGHI, 2017. "The influence of deforestation and anthropogenic activities on runoff generation," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 63(6), pages 245-253.
  • Handle: RePEc:caa:jnljfs:v:63:y:2017:i:6:id:130-2016-jfs
    DOI: 10.17221/130/2016-JFS
    as

    Download full text from publisher

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/130/2016-JFS.html
    Download Restriction: free of charge

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/130/2016-JFS.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/130/2016-JFS?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. Gholami & M. Ahmadi Jolandan & J. Torkaman, 2017. "Evaluation of climate change in northern Iran during the last four centuries by using dendroclimatology," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1835-1850, February.
    2. Vahid GHOLAMI & Mohamad Reza KHALEGHI, 2013. "The impact of vegetation on the bank erosion (Case study: The Haraz River)," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 8(4), pages 158-164.
    3. Esmaeili Hoseen GHOLZOM & Vahid GHOLAMI, 2012. "A comparison between natural forests and reforested lands in terms of runoff generation potential and hydrologic response (case study: Kasilian Watershed)," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 7(4), pages 166-173.
    4. K. Geetha & S. Mishra & T. Eldho & A. Rastogi & R. Pandey, 2008. "SCS-CN-based Continuous Simulation Model for Hydrologic Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(2), pages 165-190, February.
    5. Mohammad Reza KHALEGHI & Jamal GHODUSI & Hassan AHMADI, 2014. "Regional analysis using the Geomorphologic Instantaneous Unit Hydrograph (GIUH) method," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 9(1), pages 25-30.
    6. Vikrant Jain & R. Sinha, 2003. "Derivation of Unit Hydrograph from GIUH Analysis for a Himalayan River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 17(5), pages 355-376, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vahid Gholami & Mohammad Reza Khaleghi, 2021. "A simulation of the rainfall-runoff process using artificial neural network and HEC-HMS model in forest lands," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 67(4), pages 165-174.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Dalir & R. Naghdi & V. Gholami, 2014. "Modelling of forest road sediment in the northern forest of Iran (Lomir Watershed)," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 60(3), pages 109-114.
    2. Mohammad Reza KHALEGHI, 2018. "Application of dendroclimatology in evaluation of climatic changes," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 64(3), pages 139-147.
    3. Robyn Horan & Pawan S. Wable & Veena Srinivasan & Helen E. Baron & Virginie J. D. Keller & Kaushal K. Garg & Nathan Rickards & Mike Simpson & Helen A. Houghton-Carr & H. Gwyn Rees, 2021. "Modelling Small-Scale Storage Interventions in Semi-Arid India at the Basin Scale," Sustainability, MDPI, vol. 13(11), pages 1-28, May.
    4. Muhammad Ajmal & Jae-Hyun Ahn & Tae-Woong Kim, 2016. "Excess Stormwater Quantification in Ungauged Watersheds Using an Event-Based Modified NRCS Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1433-1448, March.
    5. Xianhong Meng & Min Zhang & Jiahong Wen & Shiqiang Du & Hui Xu & Luyang Wang & Yan Yang, 2019. "A Simple GIS-Based Model for Urban Rainstorm Inundation Simulation," Sustainability, MDPI, vol. 11(10), pages 1-19, May.
    6. Muhammad Ajmal & Jae-Hyun Ahn & Tae-Woong Kim, 2016. "Excess Stormwater Quantification in Ungauged Watersheds Using an Event-Based Modified NRCS Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1433-1448, March.
    7. Shin-Jen Cheng, 2010. "Generation of Runoff Components from Exponential Expressions of Serial Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3561-3590, October.
    8. Samuel Beskow & Lloyd Norton & Carlos Mello, 2013. "Hydrological Prediction in a Tropical Watershed Dominated by Oxisols Using a Distributed Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 341-363, January.
    9. Stanislav Ruman & Radek Tichavský & Karel Šilhán & Manolis G. Grillakis, 2021. "Palaeoflood discharge estimation using dendrogeomorphic methods, rainfall-runoff and hydraulic modelling—a case study from southern Crete," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1721-1742, January.
    10. John Raffensperger & Thomas Cochrane, 2010. "A Smart Market for Impervious Cover," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 3065-3083, September.
    11. Anzhi Wang & Changjie Jin & Jianmei Liu & Tiefan Pei, 2006. "A Modified Hortonian Overland Flow Model Based on Laboratory Experiments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(2), pages 181-192, April.
    12. Mohammad Reza KHALEGHI & Jamal GHODUSI & Hassan AHMADI, 2014. "Regional analysis using the Geomorphologic Instantaneous Unit Hydrograph (GIUH) method," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 9(1), pages 25-30.
    13. A. Sarangi & C. Madramootoo & P. Enright & S. Prasher, 2007. "Evaluation of three unit hydrograph models to predict the surface runoff from a Canadian watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(7), pages 1127-1143, July.
    14. Si-Hui Dong, 2008. "Genetic Algorithm Based Parameter Estimation of Nash Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(4), pages 525-533, April.
    15. Emna Ellouze-Gargouri & Zoubeida Bargaoui, 2012. "Runoff Estimation for an Ungauged Catchment Using Geomorphological Instantaneous Unit Hydrograph (GIUH) and Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1615-1638, April.
    16. Konstantinos Soulis & John Valiantzas, 2013. "Identification of the SCS-CN Parameter Spatial Distribution Using Rainfall-Runoff Data in Heterogeneous Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(6), pages 1737-1749, April.
    17. Mohammad Darand & Farshad Pazhoh, 2022. "Spatiotemporal changes in precipitation concentration over Iran during 1962–2019," Climatic Change, Springer, vol. 173(3), pages 1-22, August.
    18. Esmaeili Hoseen GHOLZOM & Vahid GHOLAMI, 2012. "A comparison between natural forests and reforested lands in terms of runoff generation potential and hydrologic response (case study: Kasilian Watershed)," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 7(4), pages 166-173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnljfs:v:63:y:2017:i:6:id:130-2016-jfs. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.