IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v20y2006i2p181-192.html
   My bibliography  Save this article

A Modified Hortonian Overland Flow Model Based on Laboratory Experiments

Author

Listed:
  • Anzhi Wang
  • Changjie Jin
  • Jianmei Liu
  • Tiefan Pei

Abstract

Overland flow, which is examined here, is an important hydrological response to storms of a catchment. And it is also a main component of hillslope hydrology. Through controlling of rainfall intensities and changing of artificial slope angles, 49 overland flow hydrographs are obtained from rainfall-runoff simulation experiments conducted on a manmade hillside. Based on the measured overland flow processes, the relationship between the average water depth on the hillslope and that at the outlet, which is nearly a quadratic curve, is obtained. The relationship is different from the assumption, in which the average water depth on the hillslope is equal to that at the outlet, proposed by Horton. Finally, a regression equation is also presented, which provides both the theoretical and experimental basis to modify the time delay of peak flow for a distributed rainfall-runoff modeling. Copyright Springer Science + Business Media, Inc. 2006

Suggested Citation

  • Anzhi Wang & Changjie Jin & Jianmei Liu & Tiefan Pei, 2006. "A Modified Hortonian Overland Flow Model Based on Laboratory Experiments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(2), pages 181-192, April.
  • Handle: RePEc:spr:waterr:v:20:y:2006:i:2:p:181-192
    DOI: 10.1007/s11269-006-7375-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-006-7375-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-006-7375-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vikrant Jain & R. Sinha, 2003. "Derivation of Unit Hydrograph from GIUH Analysis for a Himalayan River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 17(5), pages 355-376, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrzej Gruchot & Tymoteusz Zydroń & Andrzej Wałęga & Jana Pařílková & Jacek Stanisz, 2022. "Influence of Rainfall Events and Surface Inclination on Overland and Subsurface Runoff Formation on Low-Permeable Soil," Sustainability, MDPI, vol. 14(9), pages 1-27, April.
    2. Changsen Zhao & Bing Shen & Lingmei Huang & Zhidong Lei & Heping Hu & Shixiu Yang, 2009. "A Dissipative Hydrological Model for the Hotan Oasis (DHMHO)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(6), pages 1183-1210, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Beskow & Lloyd Norton & Carlos Mello, 2013. "Hydrological Prediction in a Tropical Watershed Dominated by Oxisols Using a Distributed Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 341-363, January.
    2. Mohammad Reza KHALEGHI & Jamal GHODUSI & Hassan AHMADI, 2014. "Regional analysis using the Geomorphologic Instantaneous Unit Hydrograph (GIUH) method," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 9(1), pages 25-30.
    3. A. Sarangi & C. Madramootoo & P. Enright & S. Prasher, 2007. "Evaluation of three unit hydrograph models to predict the surface runoff from a Canadian watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(7), pages 1127-1143, July.
    4. Si-Hui Dong, 2008. "Genetic Algorithm Based Parameter Estimation of Nash Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(4), pages 525-533, April.
    5. Mohammad Reza KHALEGHI, 2017. "The influence of deforestation and anthropogenic activities on runoff generation," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 63(6), pages 245-253.
    6. Emna Ellouze-Gargouri & Zoubeida Bargaoui, 2012. "Runoff Estimation for an Ungauged Catchment Using Geomorphological Instantaneous Unit Hydrograph (GIUH) and Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1615-1638, April.
    7. Esmaeili Hoseen GHOLZOM & Vahid GHOLAMI, 2012. "A comparison between natural forests and reforested lands in terms of runoff generation potential and hydrologic response (case study: Kasilian Watershed)," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 7(4), pages 166-173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:20:y:2006:i:2:p:181-192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.