IDEAS home Printed from https://ideas.repec.org/a/bpj/sndecm/v19y2015i4p469-481n2.html
   My bibliography  Save this article

Noncausality and inflation persistence

Author

Listed:
  • Lanne Markku

    (Department of Political and Economic Studies, University of Helsinki, P.O. Box 17 (Arkadiankatu 7), Helsinki 00014, Finland)

Abstract

We use noncausal autoregressions to examine the persistence properties of quarterly US consumer price inflation from 1970:1 to 2012:2. These nonlinear models capture the autocorrelation structure of the inflation series as accurately as their conventional causal counterparts, but they allow for persistence to depend on the size and sign of shocks to inflation as well as the inflation rate. Inflation persistence has decreased since the early 1980s, after which persistence is also greater following small and negative shocks than large and positive ones. At high levels of inflation, shocks are absorbed more slowly before the early 1980s and faster thereafter compared to low levels of inflation.

Suggested Citation

  • Lanne Markku, 2015. "Noncausality and inflation persistence," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(4), pages 469-481, September.
  • Handle: RePEc:bpj:sndecm:v:19:y:2015:i:4:p:469-481:n:2
    DOI: 10.1515/snde-2013-0108
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/snde-2013-0108
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/snde-2013-0108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gali, Jordi & Gertler, Mark, 1999. "Inflation dynamics: A structural econometric analysis," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 195-222, October.
    2. Vasco Cúrdia & Marco Del Negro & Daniel L. Greenwald, 2014. "Rare Shocks, Great Recessions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1031-1052, November.
    3. Lanne, Markku & Luoto, Jani & Saikkonen, Pentti, 2012. "Optimal forecasting of noncausal autoregressive time series," International Journal of Forecasting, Elsevier, vol. 28(3), pages 623-631.
    4. Andrews, Beth & Davis, Richard A. & Jay Breidt, F., 2006. "Maximum likelihood estimation for all-pass time series models," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1638-1659, August.
    5. Markku Lanne & Arto Luoma & Jani Luoto, 2012. "Bayesian Model Selection And Forecasting In Noncausal Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 812-830, August.
    6. Bob Nobay & Ivan Paya & David A. Peel, 2010. "Inflation Dynamics in the U.S.: Global but Not Local Mean Reversion," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(1), pages 135-150, February.
    7. Adam Reiff & Peter Karadi, 2011. "Large Shocks in Menu Cost Models," 2011 Meeting Papers 884, Society for Economic Dynamics.
    8. Andrew T. Levin & Jeremy M. Piger, 2003. "Is inflation persistence intrinsic in industrial economies?," Working Papers 2002-023, Federal Reserve Bank of St. Louis.
    9. Siddhartha Chib & Srikanth Ramamurthy, 2014. "DSGE Models with Student- t Errors," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 152-171, June.
    10. Lanne, Markku & Saikkonen, Pentti, 2013. "Noncausal Vector Autoregression," Econometric Theory, Cambridge University Press, vol. 29(3), pages 447-481, June.
    11. Lanne, Markku & Luoto, Jani, 2012. "Has US inflation really become harder to forecast?," Economics Letters, Elsevier, vol. 115(3), pages 383-386.
    12. Clarida, Richard & Gali, Jordi & Gertler, Mark, 1998. "Monetary policy rules in practice Some international evidence," European Economic Review, Elsevier, vol. 42(6), pages 1033-1067, June.
    13. Lof Matthijs, 2013. "Noncausality and asset pricing," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(2), pages 211-220, April.
    14. van Dijk, Dick & Hans Franses, Philip & Peter Boswijk, H., 2007. "Absorption of shocks in nonlinear autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4206-4226, May.
    15. Aksoy, Yunus & Orphanides, Athanasios & Small, David & Wieland, Volker & Wilcox, David, 2006. "A quantitative exploration of the opportunistic approach to disinflation," Journal of Monetary Economics, Elsevier, vol. 53(8), pages 1877-1893, November.
    16. Richard H. Clarida & Jordi Gali & Mark Gertler, 1998. "Monetary policy rules in practice," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
    17. Galí, Jordi & Gertler, Mark, 1999. "Inflation Dynamics: A Structural Economic Analysis," CEPR Discussion Papers 2246, C.E.P.R. Discussion Papers.
    18. Lanne Markku & Saikkonen Pentti, 2011. "Noncausal Autoregressions for Economic Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-32, October.
    19. Wolters Maik H. & Tillmann Peter, 2015. "The changing dynamics of US inflation persistence: a quantile regression approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 161-182, April.
    20. van Dijk, Dick & Franses, Philip Hans & Lucas, Andre, 1999. "Testing for ARCH in the Presence of Additive Outliers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 539-562, Sept.-Oct.
    21. Stephen G. Cecchetti & Guy Debelle, 2006. "Has the inflation process changed? [‘Did the underlying behaviour of inflation change in the 1980s? A study of 22 countries,’]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 21(46), pages 312-352.
    22. Luca Benati, 2008. "Investigating Inflation Persistence Across Monetary Regimes," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 123(3), pages 1005-1060.
    23. Athanasios Orphanides & David W. Wilcox, 2002. "The Opportunistic Approach to Disinflation," International Finance, Wiley Blackwell, vol. 5(1), pages 47-71.
    24. Manmohan S. Kumar & Tatsuyoshi Okimoto, 2007. "Dynamics of Persistence in International Inflation Rates," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(6), pages 1457-1479, September.
    25. Uwe Hassler & Barbara Meller, 2014. "Detecting multiple breaks in long memory the case of U.S. inflation," Empirical Economics, Springer, vol. 46(2), pages 653-680, March.
    26. Breid, F. Jay & Davis, Richard A. & Lh, Keh-Shin & Rosenblatt, Murray, 1991. "Maximum likelihood estimation for noncausal autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 36(2), pages 175-198, February.
    27. Tsong, Ching-Chuan & Lee, Cheng-Feng, 2011. "Asymmetric inflation dynamics: Evidence from quantile regression analysis," Journal of Macroeconomics, Elsevier, vol. 33(4), pages 668-680.
    28. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitrakopoulos, Stefanos, 2017. "Semiparametric Bayesian inference for time-varying parameter regression models with stochastic volatility," Economics Letters, Elsevier, vol. 150(C), pages 10-14.
    2. Markku Lanne & Henri Nyberg, 2015. "Nonlinear dynamic interrelationships between real activity and stock returns," CREATES Research Papers 2015-36, Department of Economics and Business Economics, Aarhus University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Markku Lanne & Jani Luoto, 2017. "A New Time‐Varying Parameter Autoregressive Model for U.S. Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(5), pages 969-995, August.
    2. Giorgio Canarella & Stephen M. Miller, 2016. "Inflation Persistence and Structural Breaks: The Experience of Inflation Targeting Countries and the US," Working papers 2016-11, University of Connecticut, Department of Economics.
    3. Wolters Maik H. & Tillmann Peter, 2015. "The changing dynamics of US inflation persistence: a quantile regression approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 161-182, April.
    4. Boubaker Heni & Canarella Giorgio & Gupta Rangan & Miller Stephen M., 2017. "Time-varying persistence of inflation: evidence from a wavelet-based approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(4), pages 1-18, September.
    5. Lanne, Markku & Luoto, Jani, 2013. "Autoregression-based estimation of the new Keynesian Phillips curve," Journal of Economic Dynamics and Control, Elsevier, vol. 37(3), pages 561-570.
    6. Ahmad, Yamin S. & Staveley-O’Carroll, Olena M., 2017. "Exploring international differences in inflation dynamics," Journal of International Money and Finance, Elsevier, vol. 79(C), pages 115-135.
    7. Nyberg, Henri & Saikkonen, Pentti, 2014. "Forecasting with a noncausal VAR model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 536-555.
    8. Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2020. "Mixed Causal–Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1413-1428, December.
    9. Lanne, Markku & Saikkonen, Pentti, 2013. "Noncausal Vector Autoregression," Econometric Theory, Cambridge University Press, vol. 29(3), pages 447-481, June.
    10. Lanne Markku & Saikkonen Pentti, 2011. "Noncausal Autoregressions for Economic Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-32, October.
    11. Alain Hecq & Daniel Velasquez-Gaviria, 2022. "Spectral estimation for mixed causal-noncausal autoregressive models," Papers 2211.13830, arXiv.org.
    12. Pentti Saikkonen & Rickard Sandberg, 2016. "Testing for a Unit Root in Noncausal Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 99-125, January.
    13. Coenen, Gunter & Wieland, Volker, 2005. "A small estimated euro area model with rational expectations and nominal rigidities," European Economic Review, Elsevier, vol. 49(5), pages 1081-1104, July.
    14. Guglielmo Maria Caporale & Luis Alberiko Gil‐Alana & Tommaso Trani, 2022. "On the persistence of UK inflation: A long‐range dependence approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 439-454, January.
    15. Chen, Shyh-Wei & Hsu, Chi-Sheng, 2016. "Threshold, smooth transition and mean reversion in inflation: New evidence from European countries," Economic Modelling, Elsevier, vol. 53(C), pages 23-36.
    16. Lanne, Markku & Meitz, Mika & Saikkonen, Pentti, 2017. "Identification and estimation of non-Gaussian structural vector autoregressions," Journal of Econometrics, Elsevier, vol. 196(2), pages 288-304.
    17. Markku Lanne & Jani Luoto, 2016. "Noncausal Bayesian Vector Autoregression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1392-1406, November.
    18. Pentti Saikkonen & Rickard Sandberg, 2016. "Testing for a Unit Root in Noncausal Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 99-125, January.
    19. Lof Matthijs, 2013. "Noncausality and asset pricing," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(2), pages 211-220, April.
    20. Lof, Matthijs & Nyberg, Henri, 2017. "Noncausality and the commodity currency hypothesis," Energy Economics, Elsevier, vol. 65(C), pages 424-433.

    More about this item

    Keywords

    generalized impulse response function; inflation persistence; noncausal autoregression;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:19:y:2015:i:4:p:469-481:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.