IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v97y2006i7p1638-1659.html
   My bibliography  Save this article

Maximum likelihood estimation for all-pass time series models

Author

Listed:
  • Andrews, Beth
  • Davis, Richard A.
  • Jay Breidt, F.

Abstract

An autoregressive-moving average model in which all roots of the autoregressive polynomial are reciprocals of roots of the moving average polynomial and vice versa is called an all-pass time series model. All-pass models generate uncorrelated (white noise) time series, but these series are not independent in the non-Gaussian case. An approximate likelihood for a causal all-pass model is given and used to establish asymptotic normality for maximum likelihood estimators under general conditions. Behavior of the estimators for finite samples is studied via simulation. A two-step procedure using all-pass models to identify and estimate noninvertible autoregressive-moving average models is developed and used in the deconvolution of a simulated water gun seismogram.

Suggested Citation

  • Andrews, Beth & Davis, Richard A. & Jay Breidt, F., 2006. "Maximum likelihood estimation for all-pass time series models," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1638-1659, August.
  • Handle: RePEc:eee:jmvana:v:97:y:2006:i:7:p:1638-1659
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00003-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Davis, Richard A. & Knight, Keith & Liu, Jian, 1992. "M-estimation for autoregressions with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 40(1), pages 145-180, February.
    2. Lii, Keh-Shin & Rosenblatt, Murray, 1988. "Nonminimum phase non-Gaussian deconvolution," Journal of Multivariate Analysis, Elsevier, vol. 27(2), pages 359-374, November.
    3. Lii, Keh-Shin & Rosenblatt, Murray, 1992. "An approximate maximum likelihood estimation for non-Gaussian non-minimum phase moving average processes," Journal of Multivariate Analysis, Elsevier, vol. 43(2), pages 272-299, November.
    4. Jian Huang & Yudi Pawitan, 2000. "Quasi‐likelihood Estimation of Non‐invertible Moving Average Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 689-702, December.
    5. Breid, F. Jay & Davis, Richard A. & Lh, Keh-Shin & Rosenblatt, Murray, 1991. "Maximum likelihood estimation for noncausal autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 36(2), pages 175-198, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rongning Wu & Richard A. Davis, 2010. "Least absolute deviation estimation for general autoregressive moving average time‐series models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 98-112, March.
    2. Rongning Wu, 2013. "M-estimation for general ARMA Processes with Infinite Variance," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 571-591, September.
    3. Alain Hecq & Daniel Velasquez-Gaviria, 2022. "Spectral estimation for mixed causal-noncausal autoregressive models," Papers 2211.13830, arXiv.org.
    4. Meitz, Mika & Saikkonen, Pentti, 2013. "Maximum likelihood estimation of a noninvertible ARMA model with autoregressive conditional heteroskedasticity," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 227-255.
    5. Hecq, A.W. & Lieb, L.M. & Telg, J.M.A., 2015. "Identification of Mixed Causal-Noncausal Models : How Fat Should We Go?," Research Memorandum 035, Maastricht University, Graduate School of Business and Economics (GSBE).
    6. Pentti Saikkonen & Rickard Sandberg, 2016. "Testing for a Unit Root in Noncausal Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 99-125, January.
    7. Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2020. "Mixed Causal–Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1413-1428, December.
    8. Nikolay Gospodinov & Serena Ng, 2015. "Minimum Distance Estimation of Possibly Noninvertible Moving Average Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 403-417, July.
    9. Weifeng Jin, 2023. "Quantile Autoregression-based Non-causality Testing," Papers 2301.02937, arXiv.org.
    10. Alain Hecq & Daniel Velasquez-Gaviria, 2023. "Spectral identification and estimation of mixed causal-noncausal invertible-noninvertible models," Papers 2310.19543, arXiv.org.
    11. Jean-Baptiste MICHAU, 2019. "Helicopter Drops of Money under Secular Stagnation," Working Papers 2019-10, Center for Research in Economics and Statistics.
    12. repec:zbw:bofrdp:2013_026 is not listed on IDEAS
    13. Hecq, Alain & Issler, João Victor & Telg, Sean, 2017. "Mixed Causal-Noncausal Autoregressions with Strictly Exogenous Regressors," MPRA Paper 80767, University Library of Munich, Germany.
    14. Veiga, Helena, 2015. "Model uncertainty and the forecast accuracy of ARMA models: A survey," DES - Working Papers. Statistics and Econometrics. WS ws1508, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. Alain Hecq & Joao Victor Issler & Sean Telg, 2020. "Mixed causal–noncausal autoregressions with exogenous regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(3), pages 328-343, April.
    16. João Henrique Gonçalves Mazzeu & Esther Ruiz & Helena Veiga, 2018. "Uncertainty And Density Forecasts Of Arma Models: Comparison Of Asymptotic, Bayesian, And Bootstrap Procedures," Journal of Economic Surveys, Wiley Blackwell, vol. 32(2), pages 388-419, April.
    17. Pentti Saikkonen & Rickard Sandberg, 2016. "Testing for a Unit Root in Noncausal Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 99-125, January.
    18. Lanne, Markku & Luoto, Jani & Saikkonen, Pentti, 2012. "Optimal forecasting of noncausal autoregressive time series," International Journal of Forecasting, Elsevier, vol. 28(3), pages 623-631.
    19. Francesco Giancaterini & Alain Hecq, 2020. "Inference in mixed causal and noncausal models with generalized Student's t-distributions," Papers 2012.01888, arXiv.org, revised Nov 2022.
    20. Davis, Richard A. & Mikosch, Thomas, 1998. "Gaussian likelihood-based inference for non-invertible MA(1) processes with SS noise," Stochastic Processes and their Applications, Elsevier, vol. 77(1), pages 99-122, September.
    21. Andrews, Beth & Davis, Richard A., 2013. "Model identification for infinite variance autoregressive processes," Journal of Econometrics, Elsevier, vol. 172(2), pages 222-234.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:7:p:1638-1659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.