IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/23646.html
   My bibliography  Save this paper

Bayesian Model Selection and Forecasting in Noncausal Autoregressive Models

Author

Listed:
  • Lanne, Markku
  • Luoma, Arto
  • Luoto, Jani

Abstract

In this paper, we propose a Bayesian estimation and prediction procedure for noncausal autoregressive (AR) models. Specifically, we derive the joint posterior density of the past and future errors and the parameters, which gives posterior predictive densities as a byproduct. We show that the posterior model probability provides a convenient model selection criterion and yields information on the probabilities of the alternative causal and noncausal specifications. This is particularly useful in assessing economic theories that imply either causal or purely noncausal dynamics. As an empirical application, we consider U.S. inflation dynamics. A purely noncausal AR model gets the strongest support, but there is also substantial evidence in favor of other noncausal AR models allowing for dependence on past inflation. Thus, although U.S. inflation dynamics seem to be dominated by expectations, the backward-looking component is not completely missing. Finally, the noncausal specifications seem to yield inflation forecasts which are superior to those from alternative models especially at longer forecast horizons.

Suggested Citation

  • Lanne, Markku & Luoma, Arto & Luoto, Jani, 2009. "Bayesian Model Selection and Forecasting in Noncausal Autoregressive Models," MPRA Paper 23646, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:23646
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/23646/1/MPRA_paper_23646.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jeremy Rudd & Karl Whelan, 2006. "Can Rational Expectations Sticky-Price Models Explain Inflation Dynamics?," American Economic Review, American Economic Association, vol. 96(1), pages 303-320, March.
    2. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
    3. Bauwens, Luc & Lubrano, Michel & Richard, Jean-Francois, 2000. "Bayesian Inference in Dynamic Econometric Models," OUP Catalogue, Oxford University Press, number 9780198773139.
    4. Marriott, John & Newbold, Paul, 2000. "The strength of evidence for unit autoregressive roots and structural breaks: A Bayesian perspective," Journal of Econometrics, Elsevier, vol. 98(1), pages 1-25, September.
    5. Luc Bauwens & Michel Lubrano, 1998. "Bayesian inference on GARCH models using the Gibbs sampler," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 23-46.
    6. Andrews, Beth & Davis, Richard A. & Jay Breidt, F., 2006. "Maximum likelihood estimation for all-pass time series models," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1638-1659, August.
    7. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    8. Gali, Jordi & Gertler, Mark & David Lopez-Salido, J., 2005. "Robustness of the estimates of the hybrid New Keynesian Phillips curve," Journal of Monetary Economics, Elsevier, vol. 52(6), pages 1107-1118, September.
    9. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    10. John Geweke, 1999. "Using Simulation Methods for Bayesian Econometric Models," Computing in Economics and Finance 1999 832, Society for Computational Economics.
    11. Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 19-40, Suppl. De.
    12. Lanne, Markku & Saikkonen, Pentti, 2008. "Modeling Expectations with Noncausal Autoregressions," MPRA Paper 8411, University Library of Munich, Germany.
    13. Nelson, Charles R & Schwert, G William, 1977. "Short-Term Interest Rates as Predictors of Inflation: On Testing the Hypothesis That the Real Rate of Interest is Constant," American Economic Review, American Economic Association, vol. 67(3), pages 478-486, June.
    14. Campbell, John Y & Mankiw, N Gregory, 1990. "Permanent Income, Current Income, and Consumption," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(3), pages 265-279, July.
    15. Fama, Eugene F. & Gibbons, Michael R., 1984. "A comparison of inflation forecasts," Journal of Monetary Economics, Elsevier, vol. 13(3), pages 327-348, May.
    16. Gali, Jordi & Gertler, Mark, 1999. "Inflation dynamics: A structural econometric analysis," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 195-222, October.
    17. Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 25(Win), pages 2-11.
    18. Breid, F. Jay & Davis, Richard A. & Lh, Keh-Shin & Rosenblatt, Murray, 1991. "Maximum likelihood estimation for noncausal autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 36(2), pages 175-198, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Markku Lanne & Jani Luoto, 2017. "A New Time‐Varying Parameter Autoregressive Model for U.S. Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(5), pages 969-995, August.
    2. Henri Nyberg & Markku Lanne & Erkka Saarinen, 2012. "Does noncausality help in forecasting economic time series?," Economics Bulletin, AccessEcon, vol. 32(4), pages 2849-2859.
    3. Pentti Saikkonen & Rickard Sandberg, 2016. "Testing for a Unit Root in Noncausal Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 99-125, January.
    4. repec:zbw:bofrdp:2013_026 is not listed on IDEAS
    5. Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2020. "Mixed Causal–Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1413-1428, December.
    6. Chan, Joshua C.C. & Grant, Angelia L., 2015. "Pitfalls of estimating the marginal likelihood using the modified harmonic mean," Economics Letters, Elsevier, vol. 131(C), pages 29-33.
    7. Markku Lanne & Jani Luoto, 2016. "Noncausal Bayesian Vector Autoregression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1392-1406, November.
    8. Christian Gourieroux & Joann Jasiak, 2016. "Filtering, Prediction and Simulation Methods for Noncausal Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 405-430, May.
    9. Lof Matthijs, 2013. "Noncausality and asset pricing," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(2), pages 211-220, April.
    10. Lanne, Markku & Luoto, Jani, 2012. "Has US inflation really become harder to forecast?," Economics Letters, Elsevier, vol. 115(3), pages 383-386.
    11. Nyberg, Henri & Saikkonen, Pentti, 2014. "Forecasting with a noncausal VAR model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 536-555.
    12. Frédérique Bec & Alain Guay & Heino Bohn Nielsen & Sarra Saïdi, 2022. "Power of unit root tests against nonlinear and noncausal alternatives," THEMA Working Papers 2022-14, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    13. Pentti Saikkonen & Rickard Sandberg, 2016. "Testing for a Unit Root in Noncausal Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 99-125, January.
    14. Lanne Markku, 2015. "Noncausality and inflation persistence," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(4), pages 469-481, September.
    15. Christian Gourieroux & Andrew Hencic & Joann Jasiak, 2021. "Forecast performance and bubble analysis in noncausal MAR(1, 1) processes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 301-326, March.
    16. Lanne, Markku & Luoto, Jani, 2013. "Autoregression-based estimation of the new Keynesian Phillips curve," Journal of Economic Dynamics and Control, Elsevier, vol. 37(3), pages 561-570.
    17. Christian Gourieroux & Joann Jasiak & Michelle Tong, 2021. "Convolution‐based filtering and forecasting: An application to WTI crude oil prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1230-1244, November.
    18. Jean-Baptiste MICHAU, 2019. "Helicopter Drops of Money under Secular Stagnation," Working Papers 2019-10, Center for Research in Economics and Statistics.
    19. Lof, Matthijs, 2013. "Essays on Expectations and the Econometrics of Asset Pricing," MPRA Paper 59064, University Library of Munich, Germany.
    20. Lanne, Markku & Nyberg, Henri & Saarinen, Erkka, 2011. "Forecasting U.S. Macroeconomic and Financial Time Series with Noncausal and Causal AR Models: A Comparison," MPRA Paper 30254, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McKnight, Stephen & Mihailov, Alexander & Rumler, Fabio, 2020. "Inflation forecasting using the New Keynesian Phillips Curve with a time-varying trend," Economic Modelling, Elsevier, vol. 87(C), pages 383-393.
    2. Del Negro, Marco & Schorfheide, Frank, 2008. "Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)," Journal of Monetary Economics, Elsevier, vol. 55(7), pages 1191-1208, October.
    3. Lanne, Markku & Luoma, Arto & Luoto, Jani, 2009. "A naïve sticky information model of households' inflation expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 33(6), pages 1332-1344, June.
    4. Taylor, J.B., 2016. "The Staying Power of Staggered Wage and Price Setting Models in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 2009-2042, Elsevier.
    5. Sophocles Mavroeidis & Mikkel Plagborg-Møller & James H. Stock, 2014. "Empirical Evidence on Inflation Expectations in the New Keynesian Phillips Curve," Journal of Economic Literature, American Economic Association, vol. 52(1), pages 124-188, March.
    6. Yasufumi Gemma & Takushi Kurozumi & Mototsugu Shintani, 2023. "Trend Inflation and Evolving Inflation Dynamics:A Bayesian GMM Analysis," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 506-520, December.
    7. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2010. "Forecasting with DSGE models," Working Paper Series 1185, European Central Bank.
    8. Carlos Medel, 2017. "Forecasting Chilean inflation with the hybrid new keynesian Phillips curve: globalisation, combination, and accuracy," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 20(3), pages 004-050, December.
    9. Kevin Lansing, 2009. "Time Varying U.S. Inflation Dynamics and the New Keynesian Phillips Curve," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 12(2), pages 304-326, April.
    10. Adriana Cornea‐Madeira & João Madeira, 2022. "Econometric Analysis of Switching Expectations in UK Inflation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(3), pages 651-673, June.
    11. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022. "The global component of inflation volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.
    12. Drissi, Ramzi & Ghassan, Hassan B., 2018. "Sticky Price versus Sticky Information Price: Empirical Evidence in the New Keynesian Setting," MPRA Paper 93075, University Library of Munich, Germany, revised Apr 2019.
    13. Marc P. Giannoni & Jean Boivin, 2005. "DSGE Models in a Data-Rich Environment," Computing in Economics and Finance 2005 431, Society for Computational Economics.
    14. Carlos A. Medel, 2018. "Forecasting Inflation with the Hybrid New Keynesian Phillips Curve: A Compact-Scale Global VAR Approach," International Economic Journal, Taylor & Francis Journals, vol. 32(3), pages 331-371, July.
    15. Marco Di Pietro & Enrico Saltari, 2018. "Economic Fluctuations in the U.S. and Euro Area: Quantifying the Contribution of Technical Change," Southern Economic Journal, John Wiley & Sons, vol. 85(1), pages 203-216, July.
    16. Kim, Insu, 2009. "Dual Wage Rigidities: Theory and Some Evidence," MPRA Paper 21494, University Library of Munich, Germany, revised Mar 2010.
    17. Guerron-Quintana, Pablo A., 2011. "The implications of inflation in an estimated new Keynesian model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(6), pages 947-962, June.
    18. Chengsi Zhang & Denise R. Osborn & Dong Heon Kim, 2008. "The New Keynesian Phillips Curve: From Sticky Inflation to Sticky Prices," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(4), pages 667-699, June.
    19. Panovska, Irina & Ramamurthy, Srikanth, 2022. "Decomposing the output gap with inflation learning," Journal of Economic Dynamics and Control, Elsevier, vol. 136(C).
    20. Welz, Peter, 2006. "Assessing predetermined expectations in the standard sticky-price model: a Bayesian approach," Working Paper Series 621, European Central Bank.

    More about this item

    Keywords

    Noncausality; Autoregression; Bayesian model selection; Forecasting;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:23646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.