IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v31y2016i7p1392-1406.html
   My bibliography  Save this article

Noncausal Bayesian Vector Autoregression

Author

Listed:
  • Markku Lanne
  • Jani Luoto

Abstract

We propose a Bayesian inferential procedure for the noncausal vector autoregressive (VAR) model that is capable of capturing nonlinearities and incorporating effects of missing variables. In particular, we devise a fast and reliable posterior simulator that yields the predictive distribution as a by-product. We apply the methods to postwar quarterly U.S. inflation and GDP growth series. The noncausal VAR model turns out to be superior in terms of both in-sample fit and out-of-sample forecasting performance over its conventional causal counterpart. In addition, we find GDP growth to have predictive power for the future distribution of inflation over and above the own history of inflation, but not vice versa. This may be interpreted as evidence against the new Keynesian model that implies Granger causality from inflation to GDP growth, provided GDP growth is a reasonable proxy of the marginal cost.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Markku Lanne & Jani Luoto, 2016. "Noncausal Bayesian Vector Autoregression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1392-1406, November.
  • Handle: RePEc:wly:japmet:v:31:y:2016:i:7:p:1392-1406
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chib, Siddhartha & Greenberg, Edward, 1994. "Bayes inference in regression models with ARMA (p, q) errors," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 183-206.
    2. Geweke, John & Amisano, Gianni, 2010. "Comparing and evaluating Bayesian predictive distributions of asset returns," International Journal of Forecasting, Elsevier, vol. 26(2), pages 216-230, April.
    3. Luc Bauwens & Gary Koop & Dimitris Korobilis & Jeroen V.K. Rombouts, 2015. "The Contribution of Structural Break Models to Forecasting Macroeconomic Series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 596-620, June.
    4. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
    5. Luc Bauwens & Gary Koop & Dimitris Korobilis & Jeroen V.K. Rombouts, 2015. "The Contribution of Structural Break Models to Forecasting Macroeconomic Series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 596-620, June.
    6. Joshua C. C. Chan & Gary Koop & Simon M. Potter, 2013. "A New Model of Trend Inflation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 94-106, January.
    7. Lof Matthijs, 2013. "Noncausality and asset pricing," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(2), pages 211-220, April.
    8. Lanne, Markku & Luoto, Jani & Saikkonen, Pentti, 2012. "Optimal forecasting of noncausal autoregressive time series," International Journal of Forecasting, Elsevier, vol. 28(3), pages 623-631.
    9. Bénédicte Vidaillet & V. d'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    10. Markku Lanne & Arto Luoma & Jani Luoto, 2012. "Bayesian Model Selection And Forecasting In Noncausal Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 812-830, August.
    11. Markku Lanne & Jani Luoto, 2014. "Does Output Gap, Labour's Share or Unemployment Rate Drive Inflation?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(5), pages 715-726, October.
    12. Geweke, John, 2001. "Bayesian econometrics and forecasting," Journal of Econometrics, Elsevier, vol. 100(1), pages 11-15, January.
    13. John Geweke, 1999. "Using Simulation Methods for Bayesian Econometric Models," Computing in Economics and Finance 1999 832, Society for Computational Economics.
    14. Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 19-40, Suppl. De.
    15. Hoogerheide, Lennart & Opschoor, Anne & van Dijk, Herman K., 2012. "A class of adaptive importance sampling weighted EM algorithms for efficient and robust posterior and predictive simulation," Journal of Econometrics, Elsevier, vol. 171(2), pages 101-120.
    16. Péguin-Feissolle, Anne & Strikholm, Birgit & Teräsvirta, Timo, 2007. "Testing the Granger noncausality hypothesis in stationary nonlinear models of unknown functional form," SSE/EFI Working Paper Series in Economics and Finance 672, Stockholm School of Economics, revised 18 Jan 2012.
    17. Lanne, Markku & Saikkonen, Pentti, 2013. "Noncausal Vector Autoregression," Econometric Theory, Cambridge University Press, vol. 29(3), pages 447-481, June.
    18. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    19. Lanne Markku & Saikkonen Pentti, 2011. "Noncausal Autoregressions for Economic Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-32, October.
    20. Chib, Siddhartha & Ramamurthy, Srikanth, 2010. "Tailored randomized block MCMC methods with application to DSGE models," Journal of Econometrics, Elsevier, vol. 155(1), pages 19-38, March.
    21. repec:edn:sirdps:274 is not listed on IDEAS
    22. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
    23. repec:zbw:bofrdp:2012_033 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Numan Ülkü & Kexing Wu, 2023. "Stock Market's Response to Real Output Shocks in China: A VARwAL Estimation," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 31(5), pages 1-25, September.
    2. Christian Gourieroux & Joann Jasiak, 2016. "Filtering, Prediction and Simulation Methods for Noncausal Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 405-430, May.
    3. Nelimarkka, Jaakko, 2017. "Evidence on News Shocks under Information Deficiency," MPRA Paper 80850, University Library of Munich, Germany.
    4. Nalan Baştürk & Stefano Grassi & Lennart Hoogerheide & Herman K. Van Dijk, 2016. "Parallelization Experience with Four Canonical Econometric Models Using ParMitISEM," Econometrics, MDPI, vol. 4(1), pages 1-20, March.
    5. Ülkü, Numan & Kuruppuarachchi, Duminda & Kuzmicheva, Olga, 2017. "Stock market's response to real output shocks in Eastern European frontier markets: A VARwAL model," Emerging Markets Review, Elsevier, vol. 33(C), pages 140-154.
    6. Nelimarkka, Jaakko, 2017. "The effects of government spending under anticipation: the noncausal VAR approach," MPRA Paper 81303, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Markku Lanne & Jani Luoto, 2017. "A New Time‐Varying Parameter Autoregressive Model for U.S. Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(5), pages 969-995, August.
    2. Todd E. Clark & Taeyoung Doh, 2011. "A Bayesian evaluation of alternative models of trend inflation," Working Papers (Old Series) 1134, Federal Reserve Bank of Cleveland.
    3. Lanne Markku, 2015. "Noncausality and inflation persistence," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(4), pages 469-481, September.
    4. Nyberg, Henri & Saikkonen, Pentti, 2014. "Forecasting with a noncausal VAR model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 536-555.
    5. Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2020. "Mixed Causal–Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1413-1428, December.
    6. de Pooter, M.D. & Ravazzolo, F. & Segers, R. & van Dijk, H.K., 2008. "Bayesian near-boundary analysis in basic macroeconomic time series models," Econometric Institute Research Papers EI 2008-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Lanne, Markku & Saikkonen, Pentti, 2013. "Noncausal Vector Autoregression," Econometric Theory, Cambridge University Press, vol. 29(3), pages 447-481, June.
    8. Bekiros, Stelios D. & Paccagnini, Alessia, 2014. "Bayesian forecasting with small and medium scale factor-augmented vector autoregressive DSGE models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 298-323.
    9. Lof, Matthijs & Nyberg, Henri, 2017. "Noncausality and the commodity currency hypothesis," Energy Economics, Elsevier, vol. 65(C), pages 424-433.
    10. Zheng, Tingguo & Guo, Huiming, 2013. "Estimating a small open economy DSGE model with indeterminacy: Evidence from China," Economic Modelling, Elsevier, vol. 31(C), pages 642-652.
    11. Woźniak, Tomasz, 2015. "Testing causality between two vectors in multivariate GARCH models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 876-894.
    12. Lof Matthijs, 2013. "Noncausality and asset pricing," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(2), pages 211-220, April.
    13. repec:wyi:journl:002201 is not listed on IDEAS
    14. Christian Gourieroux & Joann Jasiak, 2016. "Filtering, Prediction and Simulation Methods for Noncausal Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 405-430, May.
    15. Fiorentini, G. & Planas, C. & Rossi, A., 2012. "The marginal likelihood of dynamic mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2650-2662.
    16. Pentti Saikkonen & Rickard Sandberg, 2016. "Testing for a Unit Root in Noncausal Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 99-125, January.
    17. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022. "The global component of inflation volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.
    18. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    19. Javier García-Cicco, 2010. "Estimating Models for Monetary Policy Analysis in Emerging Countries," Working Papers Central Bank of Chile 561, Central Bank of Chile.
    20. Efthymios G. Tsionas, 2006. "Inference in dynamic stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 669-676, July.
    21. Helmut Lütkepohl, 2013. "Vector autoregressive models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 6, pages 139-164, Edward Elgar Publishing.

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:31:y:2016:i:7:p:1392-1406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.