IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v18y2019i5p14n3.html
   My bibliography  Save this article

Clustering methods for single-cell RNA-sequencing expression data: performance evaluation with varying sample sizes and cell compositions

Author

Listed:
  • Suner Aslı

    (Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ege University, Bornova, İzmir, Turkey)

Abstract

A number of specialized clustering methods have been developed so far for the accurate analysis of single-cell RNA-sequencing (scRNA-seq) expression data, and several reports have been published documenting the performance measures of these clustering methods under different conditions. However, to date, there are no available studies regarding the systematic evaluation of the performance measures of the clustering methods taking into consideration the sample size and cell composition of a given scRNA-seq dataset. Herein, a comprehensive performance evaluation study of 11 selected scRNA-seq clustering methods was performed using synthetic datasets with known sample sizes and number of subpopulations, as well as varying levels of transcriptome complexity. The results indicate that the overall performance of the clustering methods under study are highly dependent on the sample size and complexity of the scRNA-seq dataset. In most of the cases, better clustering performances were obtained as the number of cells in a given expression dataset was increased. The findings of this study also highlight the importance of sample size for the successful detection of rare cell subpopulations with an appropriate clustering tool.

Suggested Citation

  • Suner Aslı, 2019. "Clustering methods for single-cell RNA-sequencing expression data: performance evaluation with varying sample sizes and cell compositions," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(5), pages 1-14, October.
  • Handle: RePEc:bpj:sagmbi:v:18:y:2019:i:5:p:14:n:3
    DOI: 10.1515/sagmb-2019-0004
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/sagmb-2019-0004
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/sagmb-2019-0004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dennis Fisher & Paul Hoffman, 1988. "The adjusted rand statistic: A SAS macro," Psychometrika, Springer;The Psychometric Society, vol. 53(3), pages 417-423, September.
    2. Chang, Fang & Qiu, Weiliang & Zamar, Ruben H. & Lazarus, Ross & Wang, Xiaogang, 2010. "clues: An R Package for Nonparametric Clustering Based on Local Shrinking," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i04).
    3. Sunitha Nagrath & Lecia V. Sequist & Shyamala Maheswaran & Daphne W. Bell & Daniel Irimia & Lindsey Ulkus & Matthew R. Smith & Eunice L. Kwak & Subba Digumarthy & Alona Muzikansky & Paula Ryan & Ulyss, 2007. "Isolation of rare circulating tumour cells in cancer patients by microchip technology," Nature, Nature, vol. 450(7173), pages 1235-1239, December.
    4. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    5. Dominic Grün & Anna Lyubimova & Lennart Kester & Kay Wiebrands & Onur Basak & Nobuo Sasaki & Hans Clevers & Alexander van Oudenaarden, 2015. "Single-cell messenger RNA sequencing reveals rare intestinal cell types," Nature, Nature, vol. 525(7568), pages 251-255, September.
    6. Michael Buckland & Fredric Gey, 1994. "The relationship between Recall and Precision," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 45(1), pages 12-19, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming-Wen Hu & Dong Won Kim & Sheng Liu & Donald J Zack & Seth Blackshaw & Jiang Qian, 2019. "PanoView: An iterative clustering method for single-cell RNA sequencing data," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-17, August.
    2. Rodríguez, Carlos E. & Núñez-Antonio, Gabriel & Escarela, Gabriel, 2020. "A Bayesian mixture model for clustering circular data," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
    3. Miriam Aparicio, 2021. "Resiliency and Cooperation or Regarding Social and Collective Competencies for University Achievement. An Analysis from a Systemic Perspective," European Journal of Social Sciences Education and Research Articles, Revistia Research and Publishing, vol. 8, ejser_v8_.
    4. Yunpeng Zhao & Qing Pan & Chengan Du, 2019. "Logistic regression augmented community detection for network data with application in identifying autism‐related gene pathways," Biometrics, The International Biometric Society, vol. 75(1), pages 222-234, March.
    5. Wu, Han-Ming & Tien, Yin-Jing & Chen, Chun-houh, 2010. "GAP: A graphical environment for matrix visualization and cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 767-778, March.
    6. José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
    7. F. Marta L. Di Lascio & Andrea Menapace & Roberta Pappadà, 2024. "A spatially‐weighted AMH copula‐based dissimilarity measure for clustering variables: An application to urban thermal efficiency," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    8. Yifan Zhu & Chongzhi Di & Ying Qing Chen, 2019. "Clustering Functional Data with Application to Electronic Medication Adherence Monitoring in HIV Prevention Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 238-261, July.
    9. Irene Vrbik & Paul McNicholas, 2015. "Fractionally-Supervised Classification," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 359-381, October.
    10. Maurizio Vichi & Carlo Cavicchia & Patrick J. F. Groenen, 2022. "Hierarchical Means Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 553-577, November.
    11. Batool, Fatima & Hennig, Christian, 2021. "Clustering with the Average Silhouette Width," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    12. Giuseppe RICCIARDO LAMONICA, 2002. "La funzionalita' nelle zone omogenee delle Marche," Working Papers 165, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    13. Patrick D. Shay & Stephen S. Farnsworth Mick, 2017. "Clustered and distinct: a taxonomy of local multihospital systems," Health Care Management Science, Springer, vol. 20(3), pages 303-315, September.
    14. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    15. Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
    16. Matthijs Warrens, 2010. "Inequalities Between Kappa and Kappa-Like Statistics for k×k Tables," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 176-185, March.
    17. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    18. Jerzy Korzeniewski, 2016. "New Method Of Variable Selection For Binary Data Cluster Analysis," Statistics in Transition New Series, Polish Statistical Association, vol. 17(2), pages 295-304, June.
    19. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
    20. Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:18:y:2019:i:5:p:14:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.