Model selection for factorial Gaussian graphical models with an application to dynamic regulatory networks
Author
Abstract
Suggested Citation
DOI: 10.1515/sagmb-2014-0075
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2011. "Joint estimation of multiple graphical models," Biometrika, Biometrika Trust, vol. 98(1), pages 1-15.
- Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
- Søren Højsgaard & Steffen L. Lauritzen, 2008. "Graphical Gaussian models with edge and vertex symmetries," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 1005-1027, November.
- Bradley Efron, 2004. "The Estimation of Prediction Error: Covariance Penalties and Cross-Validation," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 619-632, January.
- Ernst Wit & Edwin van den Heuvel & Jan-Willem Romeijn, 2012. "‘All models are wrong...’: an introduction to model uncertainty," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(3), pages 217-236, August.
- Wit, Ernst & Abbruzzo, Antonino, 2015. "Factorial graphical models for dynamic networks," Network Science, Cambridge University Press, vol. 3(1), pages 37-57, March.
- Luigi Augugliaro & Angelo M. Mineo & Ernst C. Wit, 2013. "Differential geometric least angle regression: a differential geometric approach to sparse generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 471-498, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dong Liu & Changwei Zhao & Yong He & Lei Liu & Ying Guo & Xinsheng Zhang, 2023. "Simultaneous cluster structure learning and estimation of heterogeneous graphs for matrix‐variate fMRI data," Biometrics, The International Biometric Society, vol. 79(3), pages 2246-2259, September.
- Alessandro Casa & Andrea Cappozzo & Michael Fop, 2022. "Group-Wise Shrinkage Estimation in Penalized Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 648-674, November.
- Skripnikov, A. & Michailidis, G., 2019. "Joint estimation of multiple network Granger causal models," Econometrics and Statistics, Elsevier, vol. 10(C), pages 120-133.
- Augugliaro, Luigi & Mineo, Angelo & Wit, Ernst C., 2014. "dglars: An R Package to Estimate Sparse Generalized Linear Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 59(i08).
- Pircalabelu, Eugen & Artemiou, Andreas, 2021. "Graph informed sliced inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
- Pan, Yuqing & Mai, Qing, 2020. "Efficient computation for differential network analysis with applications to quadratic discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Abbruzzo, Antonino & Fasone, Vincenzo & Scuderi, Raffaele, 2016. "Operational and financial performance of Italian airport companies: A dynamic graphical model," Transport Policy, Elsevier, vol. 52(C), pages 231-237.
- Hirose, Kei & Tateishi, Shohei & Konishi, Sadanori, 2013. "Tuning parameter selection in sparse regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 28-40.
- Matthew Gentzkow & Bryan T. Kelly & Matt Taddy, 2017. "Text as Data," NBER Working Papers 23276, National Bureau of Economic Research, Inc.
- Wit, Ernst C., 2018. "Big data and biostatistics: The death of the asymptotic Valhalla," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 30-33.
- Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
- Ernesto Carrella & Richard M. Bailey & Jens Koed Madsen, 2018. "Indirect inference through prediction," Papers 1807.01579, arXiv.org.
- Theo Dijkstra, 2014. "Ridge regression and its degrees of freedom," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 3185-3193, November.
- Rui Wang & Naihua Xiu & Kim-Chuan Toh, 2021. "Subspace quadratic regularization method for group sparse multinomial logistic regression," Computational Optimization and Applications, Springer, vol. 79(3), pages 531-559, July.
- Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
- Masakazu Higuchi & Mitsuteru Nakamura & Shuji Shinohara & Yasuhiro Omiya & Takeshi Takano & Daisuke Mizuguchi & Noriaki Sonota & Hiroyuki Toda & Taku Saito & Mirai So & Eiji Takayama & Hiroo Terashi &, 2022. "Detection of Major Depressive Disorder Based on a Combination of Voice Features: An Exploratory Approach," IJERPH, MDPI, vol. 19(18), pages 1-13, September.
- Susan Athey & Guido W. Imbens & Stefan Wager, 2018.
"Approximate residual balancing: debiased inference of average treatment effects in high dimensions,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
- Susan Athey & Guido W. Imbens & Stefan Wager, 2016. "Approximate Residual Balancing: De-Biased Inference of Average Treatment Effects in High Dimensions," Papers 1604.07125, arXiv.org, revised Jan 2018.
- Vincent, Martin & Hansen, Niels Richard, 2014. "Sparse group lasso and high dimensional multinomial classification," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 771-786.
- Chen, Le-Yu & Lee, Sokbae, 2018.
"Best subset binary prediction,"
Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
- Le-Yu Chen & Sokbae Lee, 2016. "Best Subset Binary Prediction," Papers 1610.02738, arXiv.org, revised May 2018.
- Le-Yu Chen & Sokbae (Simon) Lee, 2017. "Best subset binary prediction," CeMMAP working papers CWP50/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Le-Yu Chen & Sokbae (Simon) Lee, 2017. "Best subset binary prediction," CeMMAP working papers 50/17, Institute for Fiscal Studies.
- Perrot-Dockès Marie & Lévy-Leduc Céline & Chiquet Julien & Sansonnet Laure & Brégère Margaux & Étienne Marie-Pierre & Robin Stéphane & Genta-Jouve Grégory, 2018. "A variable selection approach in the multivariate linear model: an application to LC-MS metabolomics data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 17(5), pages 1-14, October.
More about this item
Keywords
gene-regulatory systems; graphical models; penalized inference; sparse networks;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:15:y:2016:i:3:p:193-212:n:1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.