IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v14y2015i1p1-19n1.html
   My bibliography  Save this article

A region-based multiple testing method for hypotheses ordered in space or time

Author

Listed:
  • Meijer Rosa J.

    (Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Postzone S5-P, P.O. Box 9604, 2300 RC Leiden, The Netherlands)

  • Krebs Thijmen J.P.

    (Faculty of Electrical Engineering, Mathematics and Information Technology, Delft University, P.O. Box 5031, 2600 GA Delft, The Netherlands)

  • Goeman Jelle J.

    (Section Biostatistics, Department for Health Evidence, Radboud University Medical Center, Postzone 133, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands)

Abstract

We present a multiple testing method for hypotheses that are ordered in space or time. Given such hypotheses, the elementary hypotheses as well as regions of consecutive hypotheses are of interest. These region hypotheses not only have intrinsic meaning but testing them also has the advantage that (potentially small) signals across a region are combined in one test. Because the expected number and length of potentially interesting regions are usually not available beforehand, we propose a method that tests all possible region hypotheses as well as all individual hypotheses in a single multiple testing procedure that controls the familywise error rate. We start at testing the global null-hypothesis and when this hypothesis can be rejected we continue with further specifying the exact location/locations of the effect present. The method is implemented in the R package cherry and is illustrated on a DNA copy number data set.

Suggested Citation

  • Meijer Rosa J. & Krebs Thijmen J.P. & Goeman Jelle J., 2015. "A region-based multiple testing method for hypotheses ordered in space or time," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(1), pages 1-19, February.
  • Handle: RePEc:bpj:sagmbi:v:14:y:2015:i:1:p:1-19:n:1
    DOI: 10.1515/sagmb-2013-0075
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/sagmb-2013-0075
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/sagmb-2013-0075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goeman Jelle J. & Finos Livio, 2012. "The Inheritance Procedure: Multiple Testing of Tree-structured Hypotheses," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-18, January.
    2. Benjamini, Yoav & Heller, Ruth, 2007. "False Discovery Rates for Spatial Signals," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1272-1281, December.
    3. M. Perone Pacifico & C. Genovese & I. Verdinelli & L. Wasserman, 2004. "False Discovery Control for Random Fields," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1002-1014, December.
    4. Nicolai Meinshausen, 2008. "Hierarchical testing of variable importance," Biometrika, Biometrika Trust, vol. 95(2), pages 265-278.
    5. Westfall, Peter H. & Tobias, Randall D., 2007. "Multiple Testing of General Contrasts: Truncated Closure and the Extended ShafferRoyen Method," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 487-494, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claude Renaux & Laura Buzdugan & Markus Kalisch & Peter Bühlmann, 2020. "Hierarchical inference for genome-wide association studies: a view on methodology with software," Computational Statistics, Springer, vol. 35(1), pages 1-40, March.
    2. Wiuf Carsten & Schaumburg-Müller Pallesen Jonatan & Foldager Leslie & Grove Jakob, 2016. "LandScape: a simple method to aggregate p-values and other stochastic variables without a priori grouping," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(4), pages 349-361, August.
    3. Guillermo Durand & Gilles Blanchard & Pierre Neuvial & Etienne Roquain, 2020. "Post hoc false positive control for structured hypotheses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1114-1148, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim Kyung In & Roquain Etienne & van de Wiel Mark A, 2010. "Spatial Clustering of Array CGH Features in Combination with Hierarchical Multiple Testing," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-25, November.
    2. Antoine Bichat & Christophe Ambroise & Mahendra Mariadassou, 2022. "Hierarchical correction of p-values via an ultrametric tree running Ornstein-Uhlenbeck process," Computational Statistics, Springer, vol. 37(3), pages 995-1013, July.
    3. Niels Lundtorp Olsen & Alessia Pini & Simone Vantini, 2021. "False discovery rate for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 784-809, September.
    4. Gilles R. Ducharme & Walid Al Akhras, 2016. "Tree based diagnostic procedures following a smooth test of goodness-of-fit," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(8), pages 971-989, November.
    5. Qingyun Cai & Hock Peng Chan, 2017. "A Double Application of the Benjamini-Hochberg Procedure for Testing Batched Hypotheses," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 429-443, June.
    6. Claude Renaux & Laura Buzdugan & Markus Kalisch & Peter Bühlmann, 2020. "Hierarchical inference for genome-wide association studies: a view on methodology with software," Computational Statistics, Springer, vol. 35(1), pages 1-40, March.
    7. T. Tony Cai & Wenguang Sun, 2017. "Optimal screening and discovery of sparse signals with applications to multistage high throughput studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 197-223, January.
    8. Yoav Benjamini, 2010. "Discovering the false discovery rate," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 405-416, September.
    9. Wang Xiaoming & Dinu Irina & Liu Wei & Yasui Yutaka, 2011. "Linear Combination Test for Hierarchical Gene Set Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-18, March.
    10. Alessandro, Martin & Cardinale Lagomarsino, Bruno & Scartascini, Carlos & Streb, Jorge & Torrealday, Jerónimo, 2021. "Transparency and Trust in Government. Evidence from a Survey Experiment," World Development, Elsevier, vol. 138(C).
    11. Brice Ozenne & Esben Budtz-Jørgensen & Sebastian Elgaard Ebert, 2023. "Controlling the familywise error rate when performing multiple comparisons in a linear latent variable model," Computational Statistics, Springer, vol. 38(1), pages 1-23, March.
    12. Konrad Abramowicz & Alessia Pini & Lina Schelin & Sara Sjöstedt de Luna & Aymeric Stamm & Simone Vantini, 2023. "Domain selection and familywise error rate for functional data: A unified framework," Biometrics, The International Biometric Society, vol. 79(2), pages 1119-1132, June.
    13. Claude Renaux & Laura Buzdugan & Markus Kalisch & Peter Bühlmann, 2020. "Rejoinder on: Hierarchical inference for genome-wide association studies: a view on methodology with software," Computational Statistics, Springer, vol. 35(1), pages 59-67, March.
    14. Perone Pacifico, M. & Genovese, C. & Verdinelli, I. & Wasserman, L., 2007. "Scan clustering: A false discovery approach," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1441-1469, August.
    15. Zhang, Chunming & Lu, Yuefeng & Johnstone, Tom & Oakes, Terry & Davidson, Richard J., 2008. "Efficient modeling and inference for event-related fMRI data," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4859-4871, June.
    16. Guillermo Durand & Gilles Blanchard & Pierre Neuvial & Etienne Roquain, 2020. "Post hoc false positive control for structured hypotheses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1114-1148, December.
    17. Noirrit Kiran Chandra & Sourabh Bhattacharya, 2021. "Asymptotic theory of dependent Bayesian multiple testing procedures under possible model misspecification," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 891-920, October.
    18. Paul Blanche & Jean‐François Dartigues & Jérémie Riou, 2022. "A closed max‐t test for multiple comparisons of areas under the ROC curve," Biometrics, The International Biometric Society, vol. 78(1), pages 352-363, March.
    19. Sudipto Banerjee, 2023. "Discussion of “Optimal test procedures for multiple hypotheses controlling the familywise expected loss” by Willi Maurer, Frank Bretz, and Xiaolei Xun," Biometrics, The International Biometric Society, vol. 79(4), pages 2798-2801, December.
    20. Patrick K. Kimes & Yufeng Liu & David Neil Hayes & James Stephen Marron, 2017. "Statistical significance for hierarchical clustering," Biometrics, The International Biometric Society, vol. 73(3), pages 811-821, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:14:y:2015:i:1:p:1-19:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.