IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v102y2007mdecemberp1272-1281.html
   My bibliography  Save this article

False Discovery Rates for Spatial Signals

Author

Listed:
  • Benjamini, Yoav
  • Heller, Ruth

Abstract

No abstract is available for this item.

Suggested Citation

  • Benjamini, Yoav & Heller, Ruth, 2007. "False Discovery Rates for Spatial Signals," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1272-1281, December.
  • Handle: RePEc:bes:jnlasa:v:102:y:2007:m:december:p:1272-1281
    as

    Download full text from publisher

    File URL: http://www.ingentaconnect.com/content/asa/jasa/2007/00000102/00000480/art00021
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim Kyung In & Roquain Etienne & van de Wiel Mark A, 2010. "Spatial Clustering of Array CGH Features in Combination with Hierarchical Multiple Testing," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-25, November.
    2. Meijer Rosa J. & Krebs Thijmen J.P. & Goeman Jelle J., 2015. "A region-based multiple testing method for hypotheses ordered in space or time," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(1), pages 1-19, February.
    3. Niels Lundtorp Olsen & Alessia Pini & Simone Vantini, 2021. "False discovery rate for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 784-809, September.
    4. Wang, Xia & Shojaie, Ali & Zou, Jian, 2019. "Bayesian hidden Markov models for dependent large-scale multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 123-136.
    5. Prokopis C. Prokopiou & Nina Engels-Domínguez & Kathryn V. Papp & Matthew R. Scott & Aaron P. Schultz & Christoph Schneider & Michelle E. Farrell & Rachel F. Buckley & Yakeel T. Quiroz & Georges El Fa, 2022. "Lower novelty-related locus coeruleus function is associated with Aβ-related cognitive decline in clinically healthy individuals," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. T. Tony Cai & Wenguang Sun, 2017. "Optimal screening and discovery of sparse signals with applications to multistage high throughput studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 197-223, January.
    7. Cai, Qingyun, 2018. "A scoring criterion for rejection of clustered p-values," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 180-189.
    8. Antoine Bichat & Christophe Ambroise & Mahendra Mariadassou, 2022. "Hierarchical correction of p-values via an ultrametric tree running Ornstein-Uhlenbeck process," Computational Statistics, Springer, vol. 37(3), pages 995-1013, July.
    9. Yu Xiaoqing & Sun Shuying, 2016. "Comparing five statistical methods of differential methylation identification using bisulfite sequencing data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(2), pages 173-191, April.
    10. Yoav Benjamini, 2010. "Discovering the false discovery rate," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 405-416, September.
    11. Li Wang, 2019. "Weighted multiple testing procedure for grouped hypotheses with k-FWER control," Computational Statistics, Springer, vol. 34(2), pages 885-909, June.
    12. Qingyun Cai & Hock Peng Chan, 2017. "A Double Application of the Benjamini-Hochberg Procedure for Testing Batched Hypotheses," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 429-443, June.
    13. Roelant Eijgelaar & Philip C De Witt Hamer & Carel F W Peeters & Frederik Barkhof & Marcel van Herk & Marnix G Witte, 2019. "Voxelwise statistical methods to localize practice variation in brain tumor surgery," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-12, September.
    14. Wenguang Sun & T. Tony Cai, 2009. "Large‐scale multiple testing under dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 393-424, April.
    15. Noirrit Kiran Chandra & Sourabh Bhattacharya, 2021. "Asymptotic theory of dependent Bayesian multiple testing procedures under possible model misspecification," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 891-920, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:102:y:2007:m:december:p:1272-1281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.