IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v79y2016i8d10.1007_s00184-016-0585-9.html
   My bibliography  Save this article

Tree based diagnostic procedures following a smooth test of goodness-of-fit

Author

Listed:
  • Gilles R. Ducharme

    (Université de Montpellier)

  • Walid Al Akhras

    (Université de Montpellier)

Abstract

This paper introduces a statistical procedure, to be applied after a goodness-of-fit test has rejected a null model, that provides diagnostic information to help the user decide on a better model. The procedure goes through a list of departures, each being tested by a local smooth test. The list is organized into a hierarchy by seeking answers to the questions “Where is the problem?” and “What is the problem there?”. This hierarchy allows to focus on finer departures as the data becomes more abundant. The procedure controls the family-wise Type 1 error rate. Simulations show that the procedure can succeed in providing useful diagnostic information.

Suggested Citation

  • Gilles R. Ducharme & Walid Al Akhras, 2016. "Tree based diagnostic procedures following a smooth test of goodness-of-fit," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(8), pages 971-989, November.
  • Handle: RePEc:spr:metrik:v:79:y:2016:i:8:d:10.1007_s00184-016-0585-9
    DOI: 10.1007/s00184-016-0585-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-016-0585-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-016-0585-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goeman Jelle J. & Finos Livio, 2012. "The Inheritance Procedure: Multiple Testing of Tree-structured Hypotheses," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-18, January.
    2. Norbert Henze, 1997. "Do components of smooth tests of fit have diagnostic properties?," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 45(1), pages 121-130, January.
    3. Nicolai Meinshausen, 2008. "Hierarchical testing of variable importance," Biometrika, Biometrika Trust, vol. 95(2), pages 265-278.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ducharme, Gilles R. & Lafaye de Micheaux, Pierre, 2020. "A goodness-of-fit test for elliptical distributions with diagnostic capabilities," Journal of Multivariate Analysis, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meijer Rosa J. & Krebs Thijmen J.P. & Goeman Jelle J., 2015. "A region-based multiple testing method for hypotheses ordered in space or time," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(1), pages 1-19, February.
    2. Antoine Bichat & Christophe Ambroise & Mahendra Mariadassou, 2022. "Hierarchical correction of p-values via an ultrametric tree running Ornstein-Uhlenbeck process," Computational Statistics, Springer, vol. 37(3), pages 995-1013, July.
    3. Claude Renaux & Laura Buzdugan & Markus Kalisch & Peter Bühlmann, 2020. "Hierarchical inference for genome-wide association studies: a view on methodology with software," Computational Statistics, Springer, vol. 35(1), pages 1-40, March.
    4. Wang Xiaoming & Dinu Irina & Liu Wei & Yasui Yutaka, 2011. "Linear Combination Test for Hierarchical Gene Set Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-18, March.
    5. Kwonsang Lee & Dylan S. Small & Paul R. Rosenbaum, 2018. "A powerful approach to the study of moderate effect modification in observational studies," Biometrics, The International Biometric Society, vol. 74(4), pages 1161-1170, December.
    6. Yoav Benjamini, 2010. "Discovering the false discovery rate," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 405-416, September.
    7. Kim Kyung In & Roquain Etienne & van de Wiel Mark A, 2010. "Spatial Clustering of Array CGH Features in Combination with Hierarchical Multiple Testing," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-25, November.
    8. Paulo C. Rodrigues & Vanda M. Lourenço, 2020. "Comments on: Hierarchical Inference for genome-wide association studies: a view on methodology with software by Paulo C. Rodrigues and Vanda M. Lourenço," Computational Statistics, Springer, vol. 35(1), pages 57-58, March.
    9. Gutjahr, Steffen & Henze, Norbert & Folkers, Martin, 1999. "Shortcomings of Generalized Affine Invariant Skewness Measures," Journal of Multivariate Analysis, Elsevier, vol. 71(1), pages 1-23, October.
    10. Jelle J. Goeman & Stefan Böhringer, 2020. "Comments on: Hierarchical inference for genome-wide association studies by Jelle J. Goeman and Stefan Böhringer," Computational Statistics, Springer, vol. 35(1), pages 41-45, March.
    11. Gao Wang & Abhishek Sarkar & Peter Carbonetto & Matthew Stephens, 2020. "A simple new approach to variable selection in regression, with application to genetic fine mapping," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1273-1300, December.
    12. Goeman Jelle J. & Finos Livio, 2012. "The Inheritance Procedure: Multiple Testing of Tree-structured Hypotheses," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-18, January.
    13. Gilles R. Ducharme & Bénédicte Fontez, 2004. "A Smooth Test of Goodness-of-Fit for Growth Curves and Monotonic Nonlinear Regression Models," Biometrics, The International Biometric Society, vol. 60(4), pages 977-986, December.
    14. Claude Renaux & Laura Buzdugan & Markus Kalisch & Peter Bühlmann, 2020. "Rejoinder on: Hierarchical inference for genome-wide association studies: a view on methodology with software," Computational Statistics, Springer, vol. 35(1), pages 59-67, March.
    15. Guillermo Durand & Gilles Blanchard & Pierre Neuvial & Etienne Roquain, 2020. "Post hoc false positive control for structured hypotheses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1114-1148, December.
    16. Patrick K. Kimes & Yufeng Liu & David Neil Hayes & James Stephen Marron, 2017. "Statistical significance for hierarchical clustering," Biometrics, The International Biometric Society, vol. 73(3), pages 811-821, September.
    17. Gilles R. Ducharme & Pierre Lafaye de Micheaux, 2004. "Goodness‐of‐fit tests of normality for the innovations in ARMA models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(3), pages 373-395, May.
    18. Anders Bredahl Kock & David Preinerstorfer, 2021. "Superconsistency of Tests in High Dimensions," Papers 2106.03700, arXiv.org, revised Jan 2022.
    19. T. Tony Cai & Wenguang Sun, 2017. "Optimal screening and discovery of sparse signals with applications to multistage high throughput studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 197-223, January.
    20. Norbert Henze, 2002. "Invariant tests for multivariate normality: a critical review," Statistical Papers, Springer, vol. 43(4), pages 467-506, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:79:y:2016:i:8:d:10.1007_s00184-016-0585-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.