IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v73y2021i5d10.1007_s10463-020-00770-3.html
   My bibliography  Save this article

Asymptotic theory of dependent Bayesian multiple testing procedures under possible model misspecification

Author

Listed:
  • Noirrit Kiran Chandra

    (University of Texas at Austin)

  • Sourabh Bhattacharya

    (Indian Statistical Institute)

Abstract

We study asymptotic properties of Bayesian multiple testing procedures and provide sufficient conditions for strong consistency under general dependence structure. We also consider a novel Bayesian multiple testing procedure and associated error measures that coherently accounts for the dependence structure present in the model. We advocate posterior versions of FDR and FNR as appropriate error rates and show that their asymptotic convergence rates are directly associated with the Kullback–Leibler divergence from the true model. The theories hold regardless of the class of postulated models being misspecified. We illustrate our results in a variable selection problem with autoregressive response variables and compare our procedure with some existing methods through simulation studies. Superior performance of the new procedure compared to the others indicates that proper exploitation of the dependence structure by multiple testing methods is indeed important. Moreover, we obtain encouraging results in a maize dataset, where we select influential marker variables.

Suggested Citation

  • Noirrit Kiran Chandra & Sourabh Bhattacharya, 2021. "Asymptotic theory of dependent Bayesian multiple testing procedures under possible model misspecification," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 891-920, October.
  • Handle: RePEc:spr:aistmt:v:73:y:2021:i:5:d:10.1007_s10463-020-00770-3
    DOI: 10.1007/s10463-020-00770-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-020-00770-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-020-00770-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Armin Schwartzman & Xihong Lin, 2011. "The effect of correlation in false discovery rate estimation," Biometrika, Biometrika Trust, vol. 98(1), pages 199-214.
    2. Mark D. Risser & Christopher J. Paciorek & Dáithí A. Stone, 2019. "Spatially Dependent Multiple Testing Under Model Misspecification, With Application to Detection of Anthropogenic Influence on Extreme Climate Events," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 61-78, January.
    3. Wenguang Sun & Brian J. Reich & T. Tony Cai & Michele Guindani & Armin Schwartzman, 2015. "False discovery control in large-scale spatial multiple testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(1), pages 59-83, January.
    4. Sun, Wenguang & Cai, T. Tony, 2007. "Oracle and Adaptive Compound Decision Rules for False Discovery Rate Control," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 901-912, September.
    5. Benjamini, Yoav & Heller, Ruth, 2007. "False Discovery Rates for Spatial Signals," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1272-1281, December.
    6. Noirrit Kiran Chandra & Richa Singh & Sourabh Bhattacharya, 2019. "A novel bayesian multiple testing approach to deregulated miRNA discovery harnessing positional clustering," Biometrics, The International Biometric Society, vol. 75(1), pages 202-209, March.
    7. Peter Muller & Giovanni Parmigiani & Christian Robert & Judith Rousseau, 2004. "Optimal Sample Size for Multiple Testing: The Case of Gene Expression Microarrays," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 990-1001, December.
    8. Wenguang Sun & T. Tony Cai, 2009. "Large‐scale multiple testing under dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 393-424, April.
    9. Efron, Bradley, 2007. "Correlation and Large-Scale Simultaneous Significance Testing," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 93-103, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xia & Shojaie, Ali & Zou, Jian, 2019. "Bayesian hidden Markov models for dependent large-scale multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 123-136.
    2. Ghosh Debashis, 2012. "Incorporating the Empirical Null Hypothesis into the Benjamini-Hochberg Procedure," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(4), pages 1-21, July.
    3. Wang, Jiangzhou & Cui, Tingting & Zhu, Wensheng & Wang, Pengfei, 2023. "Covariate-modulated large-scale multiple testing under dependence," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    4. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    5. Lee, Donghwan & Lee, Youngjo, 2016. "Extended likelihood approach to multiple testing with directional error control under a hidden Markov random field model," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 1-13.
    6. Sairam Rayaprolu & Zhiyi Chi, 2021. "False Discovery Variance Reduction in Large Scale Simultaneous Hypothesis Tests," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 711-733, September.
    7. T. Tony Cai & Weidong Liu, 2016. "Large-Scale Multiple Testing of Correlations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 229-240, March.
    8. Wenguang Sun & T. Tony Cai, 2009. "Large‐scale multiple testing under dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 393-424, April.
    9. Tingting Cui & Pengfei Wang & Wensheng Zhu, 2021. "Covariate-adjusted multiple testing in genome-wide association studies via factorial hidden Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 737-757, September.
    10. Niels Lundtorp Olsen & Alessia Pini & Simone Vantini, 2021. "False discovery rate for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 784-809, September.
    11. Ruth Heller & Saharon Rosset, 2021. "Optimal control of false discovery criteria in the two‐group model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 133-155, February.
    12. Gómez-Villegas Miguel A. & Salazar Isabel & Sanz Luis, 2014. "A Bayesian decision procedure for testing multiple hypotheses in DNA microarray experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(1), pages 49-65, February.
    13. Edsel Peña & Joshua Habiger & Wensong Wu, 2015. "Classes of multiple decision functions strongly controlling FWER and FDR," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(5), pages 563-595, July.
    14. Xiaoquan Wen, 2017. "Robust Bayesian FDR Control Using Bayes Factors, with Applications to Multi-tissue eQTL Discovery," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 28-49, June.
    15. Qingyun Cai & Hock Peng Chan, 2017. "A Double Application of the Benjamini-Hochberg Procedure for Testing Batched Hypotheses," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 429-443, June.
    16. Zhigen Zhao, 2022. "Where to find needles in a haystack?," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 148-174, March.
    17. Cui, Junfeng & Wang, Guanghui & Zou, Changliang & Wang, Zhaojun, 2023. "Change-point testing for parallel data sets with FDR control," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    18. T. Tony Cai & Wenguang Sun, 2017. "Optimal screening and discovery of sparse signals with applications to multistage high throughput studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 197-223, January.
    19. Michele Guindani & Wesley O. Johnson, 2018. "More nonparametric Bayesian inference in applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 239-251, June.
    20. Hai Shu & Bin Nan & Robert Koeppe, 2015. "Multiple testing for neuroimaging via hidden Markov random field," Biometrics, The International Biometric Society, vol. 71(3), pages 741-750, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:73:y:2021:i:5:d:10.1007_s10463-020-00770-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.