IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v19y2017i2d10.1007_s11009-016-9491-x.html
   My bibliography  Save this article

A Double Application of the Benjamini-Hochberg Procedure for Testing Batched Hypotheses

Author

Listed:
  • Qingyun Cai

    (Xiamen University)

  • Hock Peng Chan

    (National University of Singapore)

Abstract

The Benjamini-Hochberg procedure (BH) controls the false discovery rate (FDR), and on a large dataset optimizes signal discovery subject to this control. However it applies a common p-value rejection threshold that precludes it from taking advantage of index information of the null hypotheses, making it suboptimal for detecting clustered signals. We propose a double application of the BH procedure on two-level hierarchical and related datasets, the first application to identify p-value batches, and a second application on each identified batch for null hypotheses rejections. We propose a mixture model on two tiers to model signal clustering, and show that on this model, the double application reduces FDR and maintains the power of BH. We show that the doubly applied BH satisfies an average FDR control. Benjamini and Bogomolov (J R Stat Soc Ser B 76:297–318, 2014) considered a more general class of procedures and error criterions, and showed average FDR control under dependency assumptions different from ours. Their proof is also technically different. We end the paper with a description of Yekutieli’s (J Am Stat Assoc 103:309–316, 2008) procedure on hierarchical datasets, and a proposed hybrid of the double BH procedure and Yekutieli’s procedure that combines the strengths of both.

Suggested Citation

  • Qingyun Cai & Hock Peng Chan, 2017. "A Double Application of the Benjamini-Hochberg Procedure for Testing Batched Hypotheses," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 429-443, June.
  • Handle: RePEc:spr:metcap:v:19:y:2017:i:2:d:10.1007_s11009-016-9491-x
    DOI: 10.1007/s11009-016-9491-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-016-9491-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-016-9491-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bradley Efron & Nancy R. Zhang, 2011. "False discovery rates and copy number variation," Biometrika, Biometrika Trust, vol. 98(2), pages 251-271.
    2. Benjamini, Yoav & Heller, Ruth, 2007. "False Discovery Rates for Spatial Signals," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1272-1281, December.
    3. John D. Storey & Jonathan E. Taylor & David Siegmund, 2004. "Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 187-205, February.
    4. Yoav Benjamini & Daniel Yekutieli, 2005. "False Discovery Rate-Adjusted Multiple Confidence Intervals for Selected Parameters," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 71-81, March.
    5. Yoav Benjamini & Marina Bogomolov, 2014. "Selective inference on multiple families of hypotheses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 297-318, January.
    6. M. Perone Pacifico & C. Genovese & I. Verdinelli & L. Wasserman, 2004. "False Discovery Control for Random Fields," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1002-1014, December.
    7. Wenguang Sun & T. Tony Cai, 2009. "Large‐scale multiple testing under dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 393-424, April.
    8. Christopher Genovese & Larry Wasserman, 2002. "Operating characteristics and extensions of the false discovery rate procedure," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 499-517, August.
    9. Daniel A. Haber & Jeff Settleman, 2007. "Drivers and passengers," Nature, Nature, vol. 446(7132), pages 145-146, March.
    10. John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
    11. Yekutieli, Daniel, 2008. "Hierarchical False Discovery RateControlling Methodology," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 309-316, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Chiu-Lan & Cai, Qingyun, 2023. "Stock return anomalies identification during the Covid-19 with the application of a grouped multiple comparison procedure," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 168-183.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoav Benjamini, 2010. "Discovering the false discovery rate," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 405-416, September.
    2. Cai, Qingyun, 2018. "A scoring criterion for rejection of clustered p-values," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 180-189.
    3. T. Tony Cai & Wenguang Sun, 2017. "Optimal screening and discovery of sparse signals with applications to multistage high throughput studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 197-223, January.
    4. Chang, Chiu-Lan & Cai, Qingyun, 2023. "Stock return anomalies identification during the Covid-19 with the application of a grouped multiple comparison procedure," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 168-183.
    5. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    6. Guillermo Durand & Gilles Blanchard & Pierre Neuvial & Etienne Roquain, 2020. "Post hoc false positive control for structured hypotheses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1114-1148, December.
    7. Wang Chamont & Gevertz Jana L., 2016. "Finding causative genes from high-dimensional data: an appraisal of statistical and machine learning approaches," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(4), pages 321-347, August.
    8. Zehetmayer Sonja & Graf Alexandra C. & Posch Martin, 2015. "Sample size reassessment for a two-stage design controlling the false discovery rate," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(5), pages 429-442, November.
    9. Debashis Ghosh & Wei Chen & Trivellore Raghuanthan, 2004. "The false discovery rate: a variable selection perspective," The University of Michigan Department of Biostatistics Working Paper Series 1040, Berkeley Electronic Press.
    10. Guo, Wenge & Bhaskara Rao, M., 2008. "On optimality of the Benjamini-Hochberg procedure for the false discovery rate," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2024-2030, October.
    11. T. Tony Cai & Weidong Liu, 2016. "Large-Scale Multiple Testing of Correlations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 229-240, March.
    12. Wenguang Sun & T. Tony Cai, 2009. "Large‐scale multiple testing under dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 393-424, April.
    13. Kong Xin-Bing & Xu Qin-Feng, 2015. "On False Discovery and Non-discovery Proportions of the Dynamic Adaptive Procedure," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 530-544, June.
    14. Tingting Cui & Pengfei Wang & Wensheng Zhu, 2021. "Covariate-adjusted multiple testing in genome-wide association studies via factorial hidden Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 737-757, September.
    15. Wang, Xia & Shojaie, Ali & Zou, Jian, 2019. "Bayesian hidden Markov models for dependent large-scale multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 123-136.
    16. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    17. Niels Lundtorp Olsen & Alessia Pini & Simone Vantini, 2021. "False discovery rate for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 784-809, September.
    18. A Bottle & P Aylin, 2011. "Predicting the false alarm rate in multi-institution mortality monitoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1711-1718, September.
    19. Shigeyuki Matsui & Hisashi Noma, 2011. "Estimating Effect Sizes of Differentially Expressed Genes for Power and Sample-Size Assessments in Microarray Experiments," Biometrics, The International Biometric Society, vol. 67(4), pages 1225-1235, December.
    20. Lianming Wang & David B. Dunson, 2010. "Semiparametric Bayes Multiple Testing: Applications to Tumor Data," Biometrics, The International Biometric Society, vol. 66(2), pages 493-501, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:19:y:2017:i:2:d:10.1007_s11009-016-9491-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.