IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v98y2007i7p1441-1469.html
   My bibliography  Save this article

Scan clustering: A false discovery approach

Author

Listed:
  • Perone Pacifico, M.
  • Genovese, C.
  • Verdinelli, I.
  • Wasserman, L.

Abstract

We present a method that scans a random field for localized clusters while controlling the fraction of false discoveries. We use a kernel density estimator as the test statistic and adjust for the bias in this estimator by a method we introduce in this paper. We also show how to combine information across multiple bandwidths while maintaining false discovery control.

Suggested Citation

  • Perone Pacifico, M. & Genovese, C. & Verdinelli, I. & Wasserman, L., 2007. "Scan clustering: A false discovery approach," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1441-1469, August.
  • Handle: RePEc:eee:jmvana:v:98:y:2007:i:7:p:1441-1469
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00203-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cristóbal, J. A. & Alcalá, J. T., 1998. "Error Process Indexed by Bandwidth Matrices in Multivariate Local Linear Smoothing," Journal of Multivariate Analysis, Elsevier, vol. 66(2), pages 207-236, August.
    2. M. Perone Pacifico & C. Genovese & I. Verdinelli & L. Wasserman, 2004. "False Discovery Control for Random Fields," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1002-1014, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reiner-Benaim Anat & Davis Ronald W. & Juneau Kara, 2014. "Scan statistics analysis for detection of introns in time-course tiling array data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(2), pages 173-190, April.
    2. Yoav Benjamini, 2010. "Discovering the false discovery rate," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 405-416, September.
    3. Anthony Cheng & Disheng Mao & Yuping Zhang & Joseph Glaz & Zhengqing Ouyang, 2023. "Translocation detection from Hi‐C data via scan statistics," Biometrics, The International Biometric Society, vol. 79(2), pages 1306-1317, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meijer Rosa J. & Krebs Thijmen J.P. & Goeman Jelle J., 2015. "A region-based multiple testing method for hypotheses ordered in space or time," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(1), pages 1-19, February.
    2. Kim Kyung In & Roquain Etienne & van de Wiel Mark A, 2010. "Spatial Clustering of Array CGH Features in Combination with Hierarchical Multiple Testing," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-25, November.
    3. Reiner-Benaim Anat & Davis Ronald W. & Juneau Kara, 2014. "Scan statistics analysis for detection of introns in time-course tiling array data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(2), pages 173-190, April.
    4. Alessio Farcomeni, 2009. "Generalized Augmentation to Control the False Discovery Exceedance in Multiple Testing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 501-517, September.
    5. Pallavi Basu & Luella Fu & Alessio Saretto & Wenguang Sun, 2021. "Empirical Bayes Control of the False Discovery Exceedance," Working Papers 2115, Federal Reserve Bank of Dallas.
    6. Niels Lundtorp Olsen & Alessia Pini & Simone Vantini, 2021. "False discovery rate for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 784-809, September.
    7. Konrad Abramowicz & Alessia Pini & Lina Schelin & Sara Sjöstedt de Luna & Aymeric Stamm & Simone Vantini, 2023. "Domain selection and familywise error rate for functional data: A unified framework," Biometrics, The International Biometric Society, vol. 79(2), pages 1119-1132, June.
    8. Zhang, Chunming & Lu, Yuefeng & Johnstone, Tom & Oakes, Terry & Davidson, Richard J., 2008. "Efficient modeling and inference for event-related fMRI data," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4859-4871, June.
    9. Qingyun Cai & Hock Peng Chan, 2017. "A Double Application of the Benjamini-Hochberg Procedure for Testing Batched Hypotheses," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 429-443, June.
    10. Sudipto Banerjee, 2023. "Discussion of “Optimal test procedures for multiple hypotheses controlling the familywise expected loss” by Willi Maurer, Frank Bretz, and Xiaolei Xun," Biometrics, The International Biometric Society, vol. 79(4), pages 2798-2801, December.
    11. Michele Guindani & Peter Müller & Song Zhang, 2009. "A Bayesian discovery procedure," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 905-925, November.
    12. Anat Reiner-Benaim, 2016. "Scan Statistic Tail Probability Assessment Based on Process Covariance and Window Size," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 717-745, September.
    13. Sanat Sarkar & Ruth Heller, 2008. "Comments on: Control of the false discovery rate under dependence using the bootstrap and subsampling," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(3), pages 450-455, November.
    14. Joseph P. Romano & Michael Wolf, 2008. "Balanced Control of Generalized Error Rates," IEW - Working Papers 379, Institute for Empirical Research in Economics - University of Zurich.
    15. Anthony Cheng & Disheng Mao & Yuping Zhang & Joseph Glaz & Zhengqing Ouyang, 2023. "Translocation detection from Hi‐C data via scan statistics," Biometrics, The International Biometric Society, vol. 79(2), pages 1306-1317, June.
    16. Joseph P. Romano & Michael Wolf, "undated". "Control of Generalized Error Rates in Multiple Testing," IEW - Working Papers 245, Institute for Empirical Research in Economics - University of Zurich.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:7:p:1441-1469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.