IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i4p2798-2801.html
   My bibliography  Save this article

Discussion of “Optimal test procedures for multiple hypotheses controlling the familywise expected loss” by Willi Maurer, Frank Bretz, and Xiaolei Xun

Author

Listed:
  • Sudipto Banerjee

Abstract

No abstract is available for this item.

Suggested Citation

  • Sudipto Banerjee, 2023. "Discussion of “Optimal test procedures for multiple hypotheses controlling the familywise expected loss” by Willi Maurer, Frank Bretz, and Xiaolei Xun," Biometrics, The International Biometric Society, vol. 79(4), pages 2798-2801, December.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:2798-2801
    DOI: 10.1111/biom.13908
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13908
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13908?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wesley Tansey & Oluwasanmi Koyejo & Russell A. Poldrack & James G. Scott, 2018. "False Discovery Rate Smoothing," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1156-1171, July.
    2. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    3. Alastair Rushworth & Duncan Lee & Christophe Sarran, 2017. "An adaptive spatiotemporal smoothing model for estimating trends and step changes in disease risk," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 141-157, January.
    4. M. Perone Pacifico & C. Genovese & I. Verdinelli & L. Wasserman, 2004. "False Discovery Control for Random Fields," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1002-1014, December.
    5. Ying C. MacNab, 2018. "Rejoinder on: Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 554-569, September.
    6. Peter Muller & Giovanni Parmigiani & Christian Robert & Judith Rousseau, 2004. "Optimal Sample Size for Multiple Testing: The Case of Gene Expression Microarrays," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 990-1001, December.
    7. Ying C. MacNab, 2018. "Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 497-541, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. F. Corpas-Burgos & P. Botella-Rocamora & M. A. Martinez-Beneito, 2019. "On the convenience of heteroscedasticity in highly multivariate disease mapping," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1229-1250, December.
    2. Wu, Peijie & Meng, Xianghai & Song, Li, 2021. "Bayesian space–time modeling of bicycle and pedestrian crash risk by injury severity levels to explore the long-term spatiotemporal effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    3. Juan Baz & Irene Díaz & Susana Montes & Raúl Pérez-Fernández, 2022. "Some results on the Gaussian Markov Random Field construction problem based on the use of invariant subgraphs," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 856-874, September.
    4. Marcos O. Prates & Douglas R. M. Azevedo & Ying C. MacNab & Michael R. Willig, 2022. "Non‐separable spatio‐temporal models via transformed multivariate Gaussian Markov random fields," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1116-1136, November.
    5. Vinícius Diniz Mayrink & Renato Valladares Panaro & Marcelo Azevedo Costa, 2021. "Structural equation modeling with time dependence: an application comparing Brazilian energy distributors," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 353-383, June.
    6. Kim Kyung In & Roquain Etienne & van de Wiel Mark A, 2010. "Spatial Clustering of Array CGH Features in Combination with Hierarchical Multiple Testing," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-25, November.
    7. Katherine Wilson & Jon Wakefield, 2022. "A probabilistic model for analyzing summary birth history data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(11), pages 291-344.
    8. Thomas C. McHale & Claudia M. Romero-Vivas & Claudio Fronterre & Pedro Arango-Padilla & Naomi R. Waterlow & Chad D. Nix & Andrew K. Falconar & Jorge Cano, 2019. "Spatiotemporal Heterogeneity in the Distribution of Chikungunya and Zika Virus Case Incidences during their 2014 to 2016 Epidemics in Barranquilla, Colombia," IJERPH, MDPI, vol. 16(10), pages 1-21, May.
    9. Peter Congdon, 2010. "A multiple indicator, multiple cause method for representing social capital with an application to psychological distress," Journal of Geographical Systems, Springer, vol. 12(1), pages 1-23, March.
    10. Renato Assunção & Carl Schmertmann & Joseph Potter & Suzana Cavenaghi, 2005. "Empirical bayes estimation of demographic schedules for small areas," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 537-558, August.
    11. Peter Congdon, 2014. "Estimating life expectancies for US small areas: a regression framework," Journal of Geographical Systems, Springer, vol. 16(1), pages 1-18, January.
    12. Niels Lundtorp Olsen & Alessia Pini & Simone Vantini, 2021. "False discovery rate for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 784-809, September.
    13. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    14. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    15. Dani Gamerman & Ajax R. B. Moreira, 2015. "Multivariate Spatial Regression Models," Discussion Papers 0116, Instituto de Pesquisa Econômica Aplicada - IPEA.
    16. Jamie M. Madden & Simon More & Conor Teljeur & Justin Gleeson & Cathal Walsh & Guy McGrath, 2021. "Population Mobility Trends, Deprivation Index and the Spatio-Temporal Spread of Coronavirus Disease 2019 in Ireland," IJERPH, MDPI, vol. 18(12), pages 1-16, June.
    17. Peter Congdon, 2020. "Geographical Aspects of Recent Trends in Drug-Related Deaths, with a Focus on Intra-National Contextual Variation," IJERPH, MDPI, vol. 17(21), pages 1-18, November.
    18. Maciej Beręsewicz & Dagmara Nikulin, 2018. "Informal employment in Poland: an empirical spatial analysis," Spatial Economic Analysis, Taylor & Francis Journals, vol. 13(3), pages 338-355, July.
    19. Zhu, Dongping & Huang, Xiaogang & Ding, Zhixia & Zhang, Wei, 2024. "Estimation of wind turbine responses with attention-based neural network incorporating environmental uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    20. Miriam Marco & Enrique Gracia & Antonio López-Quílez & Marisol Lila, 2021. "The Spatial Overlap of Police Calls Reporting Street-Level and Behind-Closed-Doors Crime: A Bayesian Modeling Approach," IJERPH, MDPI, vol. 18(10), pages 1-14, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:2798-2801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.