IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02490586.html
   My bibliography  Save this paper

Recovering Volatility from Option Prices by Evolutionary Optimization

Author

Listed:
  • Sana Ben Hamida

    (CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique, ESTI - Ecole Supérieure de Technologie et d'Informatique [Tunis-Carthage] - UCAR - Université de Carthage (Tunisie))

  • Rama Cont

    (CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique)

Abstract

We propose a probabilistic approach for estimating parameters of an option pricing model from a set of observed option prices. Our approach is based on a stochastic optimization algorithm which generates a random sample from the set of global minima of the in-sample pricing error and allows for the existence of multiple global minima. Starting from an IID population of candidate solutions drawn from a prior distribution of the set of model parameters, the population of parameters is updated through cycles of independent random moves followed by "selection" according to pricing performance. We examine conditions under which such an evolving population converges to a sample of calibrated models. The heterogeneity of the obtained sample can then be used to quantify the degree of ill-posedness of the inverse problem: it provides a natural example of a coherent measure of risk, which is compatible with observed prices of benchmark ("vanilla") options and takes into account the model uncertainty resulting from incomplete identification of the model. We describe in detail the algorithm in the case of a diffusion model, where one aims at retrieving the unknown local volatility surface from a finite set of option prices, and illustrate its performance on simulated and empirical data sets of index options.

Suggested Citation

  • Sana Ben Hamida & Rama Cont, 2005. "Recovering Volatility from Option Prices by Evolutionary Optimization," Post-Print hal-02490586, HAL.
  • Handle: RePEc:hal:journl:hal-02490586
    DOI: 10.2139/ssrn.546882
    Note: View the original document on HAL open archive server: https://hal.parisnanterre.fr/hal-02490586
    as

    Download full text from publisher

    File URL: https://hal.parisnanterre.fr/hal-02490586/document
    Download Restriction: no

    File URL: https://libkey.io/10.2139/ssrn.546882?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Damiano Brigo & Fabio Mercurio, 2002. "Lognormal-Mixture Dynamics And Calibration To Market Volatility Smiles," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 427-446.
    2. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    3. Marco Avellaneda & Craig Friedman & Richard Holmes & Dominick Samperi, 1997. "Calibrating volatility surfaces via relative-entropy minimization," Applied Mathematical Finance, Taylor & Francis Journals, vol. 4(1), pages 37-64.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cho-Hoi Hui & Tsz-Kin Chung, 2010. "The Risk of Sudden Depreciation of the Euro in the Sovereign Debt Crisis of 2009-2010," Working Papers 252010, Hong Kong Institute for Monetary Research.
    2. Manfred Gilli & Enrico Schumann, 2012. "Heuristic optimisation in financial modelling," Annals of Operations Research, Springer, vol. 193(1), pages 129-158, March.
    3. Martin Tegn'er & Stephen Roberts, 2019. "A Probabilistic Approach to Nonparametric Local Volatility," Papers 1901.06021, arXiv.org, revised Jan 2019.
    4. A. Monteiro & R. Tütüncü & L. Vicente, 2011. "Estimation of risk-neutral density surfaces," Computational Management Science, Springer, vol. 8(4), pages 387-414, November.
    5. Mascagni Michael & Qiu Yue & Hin Lin-Yee, 2014. "High performance computing in quantitative finance: A review from the pseudo-random number generator perspective," Monte Carlo Methods and Applications, De Gruyter, vol. 20(2), pages 101-120, June.
    6. Mrázek, Milan & Pospíšil, Jan & Sobotka, Tomáš, 2016. "On calibration of stochastic and fractional stochastic volatility models," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1036-1046.
    7. Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.
    8. Marc Chataigner & Stéphane Crépey, 2019. "Credit Valuation Adjustment Compression by Genetic Optimization," Risks, MDPI, vol. 7(4), pages 1-21, September.
    9. Fig-Talamanca, Gianna, 2009. "Testing volatility autocorrelation in the constant elasticity of variance stochastic volatility model," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2201-2218, April.
    10. Christa Cuchiero & Guido Gazzani & Sara Svaluto-Ferro, 2022. "Signature-based models: theory and calibration," Papers 2207.13136, arXiv.org.
    11. Martin Tegner & Stephen Roberts, 2021. "A Bayesian take on option pricing with Gaussian processes," Papers 2112.03718, arXiv.org.
    12. Jimin Lin & Guixin Liu, 2024. "Neural Term Structure of Additive Process for Option Pricing," Papers 2408.01642, arXiv.org, revised Oct 2024.
    13. Charles Guy Njike Leunga & Donatien Hainaut, 2024. "Affine Heston model style with self-exciting jumps and long memory," Annals of Finance, Springer, vol. 20(1), pages 1-43, March.
    14. Volk-Makarewicz, Warren & Borovkova, Svetlana & Heidergott, Bernd, 2022. "Assessing the impact of jumps in an option pricing model: A gradient estimation approach," European Journal of Operational Research, Elsevier, vol. 298(2), pages 740-751.
    15. Guido Gazzani & Julien Guyon, 2024. "Pricing and calibration in the 4-factor path-dependent volatility model," Papers 2406.02319, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carr, Peter & Geman, Helyette & Madan, Dilip B., 2001. "Pricing and hedging in incomplete markets," Journal of Financial Economics, Elsevier, vol. 62(1), pages 131-167, October.
    2. Detering, Nils & Packham, Natalie, 2018. "Model risk of contingent claims," IRTG 1792 Discussion Papers 2018-036, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    3. Carol Alexander, 2002. "Short and Long Term Smile Effects: The Binomial Normal Mixture Diffusion Model," ICMA Centre Discussion Papers in Finance icma-dp2003-06, Henley Business School, University of Reading, revised Mar 2003.
    4. Carol Alexander & Leonardo Nogueira, 2004. "Stochastic Local Volatility," ICMA Centre Discussion Papers in Finance icma-dp2008-02, Henley Business School, University of Reading, revised Mar 2008.
    5. Carol Alexander & Leonardo M. Nogueira, 2004. "Hedging with Stochastic and Local Volatility," ICMA Centre Discussion Papers in Finance icma-dp2004-10, Henley Business School, University of Reading, revised Dec 2004.
    6. Alexander, Carol, 2004. "Normal mixture diffusion with uncertain volatility: Modelling short- and long-term smile effects," Journal of Banking & Finance, Elsevier, vol. 28(12), pages 2957-2980, December.
    7. Sofiane Aboura, 2014. "When the U.S. Stock Market Becomes Extreme?," Risks, MDPI, vol. 2(2), pages 1-15, May.
    8. Gordon J. Alexander & Alexandre M. Baptista, 2004. "A Comparison of VaR and CVaR Constraints on Portfolio Selection with the Mean-Variance Model," Management Science, INFORMS, vol. 50(9), pages 1261-1273, September.
    9. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    10. Christina Büsing & Sigrid Knust & Xuan Thanh Le, 2018. "Trade-off between robustness and cost for a storage loading problem: rule-based scenario generation," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 339-365, December.
    11. Winter, Peter, 2007. "Managerial Risk Accounting and Control – A German perspective," MPRA Paper 8185, University Library of Munich, Germany.
    12. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    13. Antoine Jacquier & Patrick Roome, 2015. "Black-Scholes in a CEV random environment," Papers 1503.08082, arXiv.org, revised Nov 2017.
    14. Jiang Cheng & Hung-Gay Fung & Tzu-Ting Lin & Min-Ming Wen, 2024. "CEO optimism and the use of credit default swaps: evidence from the US life insurance industry," Review of Quantitative Finance and Accounting, Springer, vol. 63(1), pages 169-194, July.
    15. Walter Farkas & Pablo Koch-Medina & Cosimo Munari, 2014. "Beyond cash-additive risk measures: when changing the numéraire fails," Finance and Stochastics, Springer, vol. 18(1), pages 145-173, January.
    16. Li, Xiao-Ming & Rose, Lawrence C., 2009. "The tail risk of emerging stock markets," Emerging Markets Review, Elsevier, vol. 10(4), pages 242-256, December.
    17. Choo, Weihao & de Jong, Piet, 2015. "The tradeoff insurance premium as a two-sided generalisation of the distortion premium," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 238-246.
    18. Louis Anthony (Tony)Cox, 2008. "What's Wrong with Risk Matrices?," Risk Analysis, John Wiley & Sons, vol. 28(2), pages 497-512, April.
    19. Jay Cao & Jacky Chen & John Hull & Zissis Poulos, 2021. "Deep Hedging of Derivatives Using Reinforcement Learning," Papers 2103.16409, arXiv.org.
    20. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2019. "Dynamic risk measures for processes via backward stochastic differential equations," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 43-50.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02490586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.