IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v27y2014i4d10.1007_s10959-013-0496-x.html
   My bibliography  Save this article

Bessel Bridges Decomposition with Varying Dimension: Applications to Finance

Author

Listed:
  • Gabriel Faraud

    (Weierstrass Institute for Applied Analysis and Stochastics (WIAS))

  • Stéphane Goutte

    (Centre National de la Recherche Scientifique (CNRS), Universités Paris 7 Diderot)

Abstract

We consider a class of stochastic processes containing the classical and well-studied class of squared Bessel processes. Our model, however, allows the dimension to be a function of the time. We first give some classical results in a larger context where a time-varying drift term can be added. Then, in the non-drifted case, we extend many results already proven in the case of classical Bessel processes to our context. Our deepest result is a decomposition of the Bridge process associated with this generalized squared Bessel process, much similar to the much celebrated result of J. Pitman and M. Yor. From a more practical point of view, we give a methodology to compute the Laplace transform of additive functionals of our process and the associated bridge. In particular, this provides direct access to the joint distribution of the values at $$t$$ t of the process and its integral. We finally give some financial applications of our results.

Suggested Citation

  • Gabriel Faraud & Stéphane Goutte, 2014. "Bessel Bridges Decomposition with Varying Dimension: Applications to Finance," Journal of Theoretical Probability, Springer, vol. 27(4), pages 1375-1403, December.
  • Handle: RePEc:spr:jotpro:v:27:y:2014:i:4:d:10.1007_s10959-013-0496-x
    DOI: 10.1007/s10959-013-0496-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-013-0496-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-013-0496-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Deelstra, G. & Delbaen, F., 1995. "Long-term returns in stochastic interest rate models," Insurance: Mathematics and Economics, Elsevier, vol. 17(2), pages 163-169, October.
    2. Griselda Deelstra & Freddy Delbaen, 1995. "Long-term returns in stochastic interest rate models," ULB Institutional Repository 2013/7578, ULB -- Universite Libre de Bruxelles.
    3. Mark Broadie & Özgür Kaya, 2006. "Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes," Operations Research, INFORMS, vol. 54(2), pages 217-231, April.
    4. Paul Glasserman & Kyoung-Kuk Kim, 2011. "Gamma expansion of the Heston stochastic volatility model," Finance and Stochastics, Springer, vol. 15(2), pages 267-296, June.
    5. Griselda Deelstra & Freddy Delbaen, 1995. "Long-term returns in stochastic interest rate models: convergence in law," ULB Institutional Repository 2013/7580, ULB -- Universite Libre de Bruxelles.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Clancy, 2021. "The Gorin–Shkolnikov Identity and Its Random Tree Generalization," Journal of Theoretical Probability, Springer, vol. 34(4), pages 2386-2420, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriel Faraud & Stéphane Goutte, 2012. "Bessel bridges decomposition with varying dimension. Applications to finance," Working Papers hal-00694126, HAL.
    2. Zhang, Zhenzhong & Tong, Jinying & Hu, Liangjian, 2016. "Long-term behavior of stochastic interest rate models with Markov switching," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 320-326.
    3. Duc, Luu Hoang & Tran, Tat Dat & Jost, Jürgen, 2018. "Ergodicity of scalar stochastic differential equations with Hölder continuous coefficients," Stochastic Processes and their Applications, Elsevier, vol. 128(10), pages 3253-3272.
    4. Federico Flore & Giovanna Nappo, 2018. "A Feynman-Kac type formula for a fixed delay CIR model," Papers 1806.00997, arXiv.org.
    5. Zhao, Juan, 2009. "Long time behaviour of stochastic interest rate models," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 459-463, June.
    6. Griselda Deelstra, 2000. "Long-term returns in stochastic interest rate models: applications," ULB Institutional Repository 2013/7590, ULB -- Universite Libre de Bruxelles.
    7. Jan de Kort, 2018. "A note on the long rate in factor models of the term structure," Mathematical Finance, Wiley Blackwell, vol. 28(2), pages 656-667, April.
    8. Rogers, L. C. G. & Stummer, Wolfgang, 2000. "Consistent fitting of one-factor models to interest rate data," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 45-63, August.
    9. Chenxu Li, 2016. "Bessel Processes, Stochastic Volatility, And Timer Options," Mathematical Finance, Wiley Blackwell, vol. 26(1), pages 122-148, January.
    10. Bao, Jianhai & Yuan, Chenggui, 2013. "Long-term behavior of stochastic interest rate models with jumps and memory," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 266-272.
    11. Annalena Mickel & Andreas Neuenkirch, 2021. "The Weak Convergence Rate of Two Semi-Exact Discretization Schemes for the Heston Model," Risks, MDPI, vol. 9(1), pages 1-38, January.
    12. Jan Baldeaux, 2011. "Exact Simulation of the 3/2 Model," Papers 1105.3297, arXiv.org, revised May 2011.
    13. Corsaro, Stefania & Kyriakou, Ioannis & Marazzina, Daniele & Marino, Zelda, 2019. "A general framework for pricing Asian options under stochastic volatility on parallel architectures," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1082-1095.
    14. Mike Giles & Lukasz Szpruch, 2012. "Multilevel Monte Carlo methods for applications in finance," Papers 1212.1377, arXiv.org.
    15. Martino Grasselli, 2017. "The 4/2 Stochastic Volatility Model: A Unified Approach For The Heston And The 3/2 Model," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 1013-1034, October.
    16. Kahalé, Nabil, 2020. "General multilevel Monte Carlo methods for pricing discretely monitored Asian options," European Journal of Operational Research, Elsevier, vol. 287(2), pages 739-748.
    17. Brignone, Riccardo & Gonzato, Luca, 2024. "Exact simulation of the Hull and White stochastic volatility model," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
    18. Pingping Zeng & Ziqing Xu & Pingping Jiang & Yue Kuen Kwok, 2023. "Analytical solvability and exact simulation in models with affine stochastic volatility and Lévy jumps," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 842-890, July.
    19. Nan Chen & Zhengyu Huang, 2013. "Localization and Exact Simulation of Brownian Motion-Driven Stochastic Differential Equations," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 591-616, August.
    20. Simon J. A. Malham & Jiaqi Shen & Anke Wiese, 2020. "Series expansions and direct inversion for the Heston model," Papers 2008.08576, arXiv.org, revised Jan 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:27:y:2014:i:4:d:10.1007_s10959-013-0496-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.