IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00694126.html
   My bibliography  Save this paper

Bessel bridges decomposition with varying dimension. Applications to finance

Author

Listed:
  • Gabriel Faraud

    (WIAS - Weierstraß-Institut für Angewandte Analysis und Stochastik = Weierstrass Institute for Applied Analysis and Stochastics [Berlin] - FVB - Forschungsverbund Berlin e.V. (FVB))

  • Stéphane Goutte

    (LPMA - Laboratoire de Probabilités et Modèles Aléatoires - UPMC - Université Pierre et Marie Curie - Paris 6 - UPD7 - Université Paris Diderot - Paris 7 - CNRS - Centre National de la Recherche Scientifique)

Abstract

We consider a class of stochastic processes containing the classical and well-studied class of Squared Bessel processes. Our model, however, allows the dimension be a function of the time. We first give some classical results in a larger context where a time-varying drift term can be added. Then in the non-drifted case we extend many results already proven in the case of classical Bessel processes to our context. Our deepest result is a decomposition of the Bridge process associated to this generalized squared Bessel process, much similar to the much celebrated result of J. Pitman and M. Yor. On a more practical point of view, we give a methodology to compute the Laplace transform of additive functionals of our process and the associated bridge. This permits in particular to get directly access to the joint distribution of the value at t of the process and its integral. We finally give some financial applications to illustrate the panel of applications of our results.

Suggested Citation

  • Gabriel Faraud & Stéphane Goutte, 2015. "Bessel bridges decomposition with varying dimension. Applications to finance," Post-Print hal-00694126, HAL.
  • Handle: RePEc:hal:journl:hal-00694126
    DOI: 10.1007/s10959-013-0496-x
    Note: View the original document on HAL open archive server: https://hal.science/hal-00694126
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00694126/document
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s10959-013-0496-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mark Broadie & Özgür Kaya, 2006. "Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes," Operations Research, INFORMS, vol. 54(2), pages 217-231, April.
    2. Deelstra, G. & Delbaen, F., 1995. "Long-term returns in stochastic interest rate models," Insurance: Mathematics and Economics, Elsevier, vol. 17(2), pages 163-169, October.
    3. Griselda Deelstra & Freddy Delbaen, 1995. "Long-term returns in stochastic interest rate models," ULB Institutional Repository 2013/7578, ULB -- Universite Libre de Bruxelles.
    4. Paul Glasserman & Kyoung-Kuk Kim, 2011. "Gamma expansion of the Heston stochastic volatility model," Finance and Stochastics, Springer, vol. 15(2), pages 267-296, June.
    5. Griselda Deelstra & Freddy Delbaen, 1995. "Long-term returns in stochastic interest rate models: convergence in law," ULB Institutional Repository 2013/7580, ULB -- Universite Libre de Bruxelles.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Clancy, 2021. "The Gorin–Shkolnikov Identity and Its Random Tree Generalization," Journal of Theoretical Probability, Springer, vol. 34(4), pages 2386-2420, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriel Faraud & Stéphane Goutte, 2012. "Bessel bridges decomposition with varying dimension. Applications to finance," Working Papers hal-00694126, HAL.
    2. Griselda Deelstra, 2000. "Long-term returns in stochastic interest rate models: applications," ULB Institutional Repository 2013/7590, ULB -- Universite Libre de Bruxelles.
    3. Zhang, Zhenzhong & Tong, Jinying & Hu, Liangjian, 2016. "Long-term behavior of stochastic interest rate models with Markov switching," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 320-326.
    4. Duc, Luu Hoang & Tran, Tat Dat & Jost, Jürgen, 2018. "Ergodicity of scalar stochastic differential equations with Hölder continuous coefficients," Stochastic Processes and their Applications, Elsevier, vol. 128(10), pages 3253-3272.
    5. Federico Flore & Giovanna Nappo, 2018. "A Feynman-Kac type formula for a fixed delay CIR model," Papers 1806.00997, arXiv.org.
    6. Zhao, Juan, 2009. "Long time behaviour of stochastic interest rate models," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 459-463, June.
    7. Jan de Kort, 2018. "A note on the long rate in factor models of the term structure," Mathematical Finance, Wiley Blackwell, vol. 28(2), pages 656-667, April.
    8. Rogers, L. C. G. & Stummer, Wolfgang, 2000. "Consistent fitting of one-factor models to interest rate data," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 45-63, August.
    9. Jaehyuk Choi, 2024. "Exact simulation scheme for the Ornstein-Uhlenbeck driven stochastic volatility model with the Karhunen-Lo\`eve expansions," Papers 2402.09243, arXiv.org.
    10. Chenxu Li, 2016. "Bessel Processes, Stochastic Volatility, And Timer Options," Mathematical Finance, Wiley Blackwell, vol. 26(1), pages 122-148, January.
    11. David Markantonis & G.-Fivos Sargentis & Panayiotis Dimitriadis & Theano Iliopoulou & Aimilia Siganou & Konstantina Moraiti & Maria Nikolinakou & Ilias Taygetos Meletopoulos & Nikos Mamassis & Demetri, 2023. "Stochastic Evaluation of the Investment Risk by the Scale of Water Infrastructures—Case Study: The Municipality of West Mani (Greece)," World, MDPI, vol. 4(1), pages 1-20, January.
    12. Liexin Cheng & Xue Cheng & Xianhua Peng, 2024. "Joint Calibration to SPX and VIX Derivative Markets with Composite Change of Time Models," Papers 2404.16295, arXiv.org, revised Aug 2024.
    13. Bao, Jianhai & Yuan, Chenggui, 2013. "Long-term behavior of stochastic interest rate models with jumps and memory," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 266-272.
    14. Annalena Mickel & Andreas Neuenkirch, 2021. "The Weak Convergence Rate of Two Semi-Exact Discretization Schemes for the Heston Model," Risks, MDPI, vol. 9(1), pages 1-38, January.
    15. Jan Baldeaux, 2011. "Exact Simulation of the 3/2 Model," Papers 1105.3297, arXiv.org, revised May 2011.
    16. Corsaro, Stefania & Kyriakou, Ioannis & Marazzina, Daniele & Marino, Zelda, 2019. "A general framework for pricing Asian options under stochastic volatility on parallel architectures," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1082-1095.
    17. Mike Giles & Lukasz Szpruch, 2012. "Multilevel Monte Carlo methods for applications in finance," Papers 1212.1377, arXiv.org.
    18. Eduardo Abi Jaber, 2024. "Simulation of square-root processes made simple: applications to the Heston model," Papers 2412.11264, arXiv.org.
    19. Choi, Jaehyuk & Kwok, Yue Kuen, 2024. "Simulation schemes for the Heston model with Poisson conditioning," European Journal of Operational Research, Elsevier, vol. 314(1), pages 363-376.
    20. Jaehyuk Choi & Yue Kuen Kwok, 2023. "Simulation schemes for the Heston model with Poisson conditioning," Papers 2301.02800, arXiv.org, revised Nov 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00694126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.