Simple, Efficient Estimators of Treatment Effects in Randomized Trials Using Generalized Linear Models to Leverage Baseline Variables
Author
Abstract
Suggested Citation
DOI: 10.2202/1557-4679.1138
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- van der Laan Mark J. & Dudoit Sandrine & Keles Sunduz, 2004. "Asymptotic Optimality of Likelihood-Based Cross-Validation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-25, March.
- Min Zhang & Anastasios A. Tsiatis & Marie Davidian, 2008. "Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates," Biometrics, The International Biometric Society, vol. 64(3), pages 707-715, September.
- Yang L. & Tsiatis A. A., 2001. "Efficiency Study of Estimators for a Treatment Effect in a Pretest-Posttest Trial," The American Statistician, American Statistical Association, vol. 55, pages 314-321, November.
- Rubin Daniel B & van der Laan Mark J., 2008. "Empirical Efficiency Maximization: Improved Locally Efficient Covariate Adjustment in Randomized Experiments and Survival Analysis," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-42, May.
- Michael Rosenblum & Mark J. van der Laan, 2009. "Using Regression Models to Analyze Randomized Trials: Asymptotically Valid Hypothesis Tests Despite Incorrectly Specified Models," Biometrics, The International Biometric Society, vol. 65(3), pages 937-945, September.
- Selene Leon & Anastasios A. Tsiatis & Marie Davidian, 2003. "Semiparametric Estimation of Treatment Effect in a Pretest-Posttest Study," Biometrics, The International Biometric Society, vol. 59(4), pages 1046-1055, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhenke Wu & Constantine E. Frangakis & Thomas A. Louis & Daniel O. Scharfstein, 2014. "Estimation of treatment effects in matched-pair cluster randomized trials by calibrating covariate imbalance between clusters," Biometrics, The International Biometric Society, vol. 70(4), pages 1014-1022, December.
- Wei Zhang & Zhiwei Zhang & Aiyi Liu, 2023. "Optimizing treatment allocation in randomized clinical trials by leveraging baseline covariates," Biometrics, The International Biometric Society, vol. 79(4), pages 2815-2829, December.
- Trang Quynh Nguyen & Elizabeth A. Stuart, 2020. "Propensity Score Analysis With Latent Covariates: Measurement Error Bias Correction Using the Covariate’s Posterior Mean, aka the Inclusive Factor Score," Journal of Educational and Behavioral Statistics, , vol. 45(5), pages 598-636, October.
- Rosenblum Michael & van der Laan Mark J., 2010. "Targeted Maximum Likelihood Estimation of the Parameter of a Marginal Structural Model," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-30, April.
- Katie Potter & Brittany Masteller & Laura B. Balzer, 2021. "Examining Obedience Training as a Physical Activity Intervention for Dog Owners: Findings from the Stealth Pet Obedience Training (SPOT) Pilot Study," IJERPH, MDPI, vol. 18(3), pages 1-11, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- David Benkeser & Iván Díaz & Alex Luedtke & Jodi Segal & Daniel Scharfstein & Michael Rosenblum, 2021. "Improving precision and power in randomized trials for COVID‐19 treatments using covariate adjustment, for binary, ordinal, and time‐to‐event outcomes," Biometrics, The International Biometric Society, vol. 77(4), pages 1467-1481, December.
- Nicholas Williams & Michael Rosenblum & Iván Díaz, 2022. "Optimising precision and power by machine learning in randomised trials with ordinal and time‐to‐event outcomes with an application to COVID‐19," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2156-2178, October.
- Wang, Qihua & Su, Miaomiao & Wang, Ruoyu, 2021. "A beyond multiple robust approach for missing response problem," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
- van der Laan Mark J., 2010. "Targeted Maximum Likelihood Based Causal Inference: Part I," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-45, February.
- van der Laan Mark J. & Gruber Susan, 2010. "Collaborative Double Robust Targeted Maximum Likelihood Estimation," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-71, May.
- Yuanyuan Shen & Tianxi Cai, 2016. "Identifying predictive markers for personalized treatment selection," Biometrics, The International Biometric Society, vol. 72(4), pages 1017-1025, December.
- Wei Zhang & Zhiwei Zhang & Aiyi Liu, 2023. "Optimizing treatment allocation in randomized clinical trials by leveraging baseline covariates," Biometrics, The International Biometric Society, vol. 79(4), pages 2815-2829, December.
- Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
- Jitendra Ganju, 2004. "Some Unexamined Aspects of Analysis of Covariance in Pretest–Posttest Studies," Biometrics, The International Biometric Society, vol. 60(3), pages 829-833, September.
- Bruce Desmarais, 2012. "Lessons in disguise: multivariate predictive mistakes in collective choice models," Public Choice, Springer, vol. 151(3), pages 719-737, June.
- Undral Byambadalai & Tatsushi Oka & Shota Yasui, 2024. "Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction," Papers 2407.16037, arXiv.org.
- Paul Frédéric Blanche & Anders Holt & Thomas Scheike, 2023. "On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 441-482, April.
- Michael Rosenblum & Mark J. van der Laan, 2013. "Rejoinder to “A Note on Using Regression Models to Analyze Randomized Trials: Asymptotically Valid Hypothesis Tests Despite Incorrectly Specified Models”," Biometrics, The International Biometric Society, vol. 69(1), pages 290-290, March.
- Stitelman Ori M & van der Laan Mark J., 2010. "Collaborative Targeted Maximum Likelihood for Time to Event Data," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-46, June.
- Hennessy Jonathan & Dasgupta Tirthankar & Miratrix Luke & Pattanayak Cassandra & Sarkar Pradipta, 2016. "A Conditional Randomization Test to Account for Covariate Imbalance in Randomized Experiments," Journal of Causal Inference, De Gruyter, vol. 4(1), pages 61-80, March.
- Pierre Chausse & George Luta, 2017. "Casual Inference using Generalized Empirical Likelihood Methods," Working Papers 1707, University of Waterloo, Department of Economics, revised Dec 2017.
- Lola Etievant & Joshua N. Sampson & Mitchell H. Gail, 2023. "Increasing efficiency and reducing bias when assessing HPV vaccination efficacy by using nontargeted HPV strains," Biometrics, The International Biometric Society, vol. 79(2), pages 1534-1545, June.
- Jiang, Liang & Phillips, Peter C.B. & Tao, Yubo & Zhang, Yichong, 2023.
"Regression-adjusted estimation of quantile treatment effects under covariate-adaptive randomizations,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 758-776.
- Liang Jiang & Xiaobin Liu & Peter C.B. Phillips & Yichong Zhang, 2021. "Regression-Adjusted Estimation of Quantile Treatment Effects under Covariate-Adaptive Randomizations," Cowles Foundation Discussion Papers 2288, Cowles Foundation for Research in Economics, Yale University.
- Liang Jiang & Peter C. B. Phillips & Yubo Tao & Yichong Zhang, 2021. "Regression-Adjusted Estimation of Quantile Treatment Effects under Covariate-Adaptive Randomizations," Papers 2105.14752, arXiv.org, revised Sep 2022.
- Tianchen Qian & Constantine Frangakis & Constantin Yiannoutsos, 2020. "Deductive Semiparametric Estimation in Double-Sampling Designs with Application to PEPFAR," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 417-445, December.
- Arafat Tayeb & Aurélie Labbe & Alexandre Bureau & Chantal Mérette, 2011. "Solving genetic heterogeneity in extended families by identifying sub-types of complex diseases," Computational Statistics, Springer, vol. 26(3), pages 539-560, September.
More about this item
Keywords
misspecified model; targeted maximum likelihood; generalized linear model; Poisson regression;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:6:y:2010:i:1:n:13. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.