On the Use of K-Fold Cross-Validation to Choose Cutoff Values and Assess the Performance of Predictive Models in Stepwise Regression
Author
Abstract
Suggested Citation
DOI: 10.2202/1557-4679.1105
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Aldrin, Magne, 2006. "Improved predictions penalizing both slope and curvature in additive models," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 267-284, January.
- van der Laan Mark J. & Dudoit Sandrine & Keles Sunduz, 2004. "Asymptotic Optimality of Likelihood-Based Cross-Validation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-25, March.
- Vaart Aad W. van der & Dudoit Sandrine & Laan Mark J. van der, 2006. "Oracle inequalities for multi-fold cross validation," Statistics & Risk Modeling, De Gruyter, vol. 24(3), pages 351-371, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jessica M. Mc Lay & Roy Lay-Yee & Barry J. Milne & Peter Davis, 2015. "Regression-Style Models for Parameter Estimation in Dynamic Microsimulation: An Empirical Performance Assessment," International Journal of Microsimulation, International Microsimulation Association, vol. 8(2), pages 83-127.
- Yoon, Dahlnym & Eher, Reinhard & Mokros, Andreas, 2022. "Incremental validity of the Psychopathy Checklist-Revised above and beyond the diagnosis of antisocial personality disorder regarding recidivism in sexual offenders," Journal of Criminal Justice, Elsevier, vol. 80(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- van der Laan Mark J., 2010. "Targeted Maximum Likelihood Based Causal Inference: Part I," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-45, February.
- Díaz Muñoz Iván & van der Laan Mark J., 2011. "Super Learner Based Conditional Density Estimation with Application to Marginal Structural Models," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-20, October.
- van der Laan Mark J. & Gruber Susan, 2010. "Collaborative Double Robust Targeted Maximum Likelihood Estimation," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-71, May.
- Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
- Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
- Bruce Desmarais, 2012. "Lessons in disguise: multivariate predictive mistakes in collective choice models," Public Choice, Springer, vol. 151(3), pages 719-737, June.
- Arafat Tayeb & Aurélie Labbe & Alexandre Bureau & Chantal Mérette, 2011. "Solving genetic heterogeneity in extended families by identifying sub-types of complex diseases," Computational Statistics, Springer, vol. 26(3), pages 539-560, September.
- Fahimeh Hadavimoghaddam & Mehdi Ostadhassan & Ehsan Heidaryan & Mohammad Ali Sadri & Inna Chapanova & Evgeny Popov & Alexey Cheremisin & Saeed Rafieepour, 2021. "Prediction of Dead Oil Viscosity: Machine Learning vs. Classical Correlations," Energies, MDPI, vol. 14(4), pages 1-16, February.
- Zhang, Yongli & Yang, Yuhong, 2015. "Cross-validation for selecting a model selection procedure," Journal of Econometrics, Elsevier, vol. 187(1), pages 95-112.
- Brooks Jordan & van der Laan Mark J. & Go Alan S., 2012. "Targeted Maximum Likelihood Estimation for Prediction Calibration," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-35, October.
- Rosenblum Michael & van der Laan Mark J., 2010. "Simple, Efficient Estimators of Treatment Effects in Randomized Trials Using Generalized Linear Models to Leverage Baseline Variables," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-44, April.
- Filippone, Maurizio & Sanguinetti, Guido, 2011. "Approximate inference of the bandwidth in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3104-3122, December.
- Labbe Aurelie & Bureau Alexandre & Merette Chantal, 2009. "Integration of Genetic Familial Dependence Structure in Latent Class Models," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-30, January.
- Costa, M.J. & Shaw, J.E.H., 2009. "Parametrization and penalties in spline models with an application to survival analysis," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 657-670, January.
- Susanne M. Schennach, 2013.
"Regressions with Berkson errors in covariates - A nonparametric approach,"
Papers
1308.2836, arXiv.org.
- Susanne M. Schennach, 2013. "Regressions with Berkson errors in covariates - a nonparametric approach," CeMMAP working papers 22/13, Institute for Fiscal Studies.
- Susanne M. Schennach, 2013. "Regressions with Berkson errors in covariates - a nonparametric approach," CeMMAP working papers CWP22/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Verhagen, Mark D., 2021. "Identifying and Improving Functional Form Complexity: A Machine Learning Framework," SocArXiv bka76, Center for Open Science.
- Benkeser David & Mertens Andrew & Colford John M. & Hubbard Alan & Arnold Benjamin F. & Stein Aryeh & van der Laan Mark J., 2021. "A machine learning-based approach for estimating and testing associations with multivariate outcomes," The International Journal of Biostatistics, De Gruyter, vol. 17(1), pages 7-21, May.
- Matthew McTeer & Robin Henderson & Quentin M. Anstee & Paolo Missier, 2024. "Handling Overlapping Asymmetric Data Sets—A Twice Penalized P-Spline Approach," Mathematics, MDPI, vol. 12(5), pages 1-33, March.
- Zhang, Xibin & King, Maxwell L. & Hyndman, Rob J., 2006. "A Bayesian approach to bandwidth selection for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3009-3031, July.
- Tomas Ruzgas & Mantas Lukauskas & Gedmantas Čepkauskas, 2021. "Nonparametric Multivariate Density Estimation: Case Study of Cauchy Mixture Model," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
More about this item
Keywords
cross-validation; cutoff values; stepwise regression; prediction; variable selection;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:5:y:2009:i:1:n:25. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.