IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v45y2020i5p598-636.html
   My bibliography  Save this article

Propensity Score Analysis With Latent Covariates: Measurement Error Bias Correction Using the Covariate’s Posterior Mean, aka the Inclusive Factor Score

Author

Listed:
  • Trang Quynh Nguyen
  • Elizabeth A. Stuart

    (1466Johns Hopkins Bloomberg School of Public Health)

Abstract

We address measurement error bias in propensity score (PS) analysis due to covariates that are latent variables. In the setting where latent covariate X is measured via multiple error-prone items W , PS analysis using several proxies for X —the W items themselves, a summary score (mean/sum of the items), or the conventional factor score (i.e., predicted value of X based on the measurement model)—often results in biased estimation of the causal effect because balancing the proxy (between exposure conditions) does not balance X . We propose an improved proxy: the conditional mean of X given the combination of W , the observed covariates Z , and exposure A , denoted X WZA . The theoretical support is that balancing X WZA (e.g., via weighting or matching) implies balancing the mean of X . For a latent X , we estimate X WZA by the inclusive factor score (iFS)—predicted value of X from a structural equation model that captures the joint distribution of ( X , W , A ) given Z . Simulation shows that PS analysis using the iFS substantially improves balance on the first five moments of X and reduces bias in the estimated causal effect. Hence, within the proxy variables approach, we recommend this proxy over existing ones. We connect this proxy method to known results about valid weighting/matching functions. We illustrate the method in handling latent covariates when estimating the effect of out-of-school suspension on risk of later police arrests using National Longitudinal Study of Adolescent to Adult Health data.

Suggested Citation

  • Trang Quynh Nguyen & Elizabeth A. Stuart, 2020. "Propensity Score Analysis With Latent Covariates: Measurement Error Bias Correction Using the Covariate’s Posterior Mean, aka the Inclusive Factor Score," Journal of Educational and Behavioral Statistics, , vol. 45(5), pages 598-636, October.
  • Handle: RePEc:sae:jedbes:v:45:y:2020:i:5:p:598-636
    DOI: 10.3102/1076998620911920
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998620911920
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998620911920?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lumley, Thomas, 2004. "Analysis of Complex Survey Samples," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 9(i08).
    2. R. Bock & Murray Aitkin, 1981. "Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 443-459, December.
    3. Rosenblum Michael & van der Laan Mark J., 2010. "Simple, Efficient Estimators of Treatment Effects in Randomized Trials Using Generalized Linear Models to Leverage Baseline Variables," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-44, April.
    4. Peter M. Steiner & Thomas D. Cook & William R. Shadish, 2011. "On the Importance of Reliable Covariate Measurement in Selection Bias Adjustments Using Propensity Scores," Journal of Educational and Behavioral Statistics, , vol. 36(2), pages 213-236, April.
    5. Maciej Jakubowski, 2015. "Latent variables and propensity score matching: a simulation study with application to data from the Programme for International Student Assessment in Poland," Empirical Economics, Springer, vol. 48(3), pages 1287-1325, May.
    6. Tsung-I Lin & Pal Wu & Geoffrey McLachlan & Sharon Lee, 2015. "A robust factor analysis model using the restricted skew- $$t$$ t distribution," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 510-531, September.
    7. Daniel F. McCaffrey & J. R. Lockwood & Claude M. Setodji, 2013. "Inverse probability weighting with error-prone covariates," Biometrika, Biometrika Trust, vol. 100(3), pages 671-680.
    8. J. R. Lockwood & Daniel F. McCaffrey, 2016. "Matching and Weighting With Functions of Error-Prone Covariates for Causal Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1831-1839, October.
    9. McLachlan, G.J. & Bean, R.W. & Ben-Tovim Jones, L., 2007. "Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5327-5338, July.
    10. Manabu Kuroki & Judea Pearl, 2014. "Measurement bias and effect restoration in causal inference," Biometrika, Biometrika Trust, vol. 101(2), pages 423-437.
    11. Grace Y. Yi & Yanyuan Ma & Raymond J. Carroll, 2012. "A functional generalized method of moments approach for longitudinal studies with missing responses and covariate measurement error," Biometrika, Biometrika Trust, vol. 99(1), pages 151-165.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. R. Lockwood & D. McCaffrey, 2020. "Using hidden information and performance level boundaries to study student–teacher assignments: implications for estimating teacher causal effects," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1333-1362, October.
    2. Marie-Ann Sengewald & Steffi Pohl, 2019. "Compensation and Amplification of Attenuation Bias in Causal Effect Estimates," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 589-610, June.
    3. J. R. Lockwood & Daniel F. McCaffrey, 2019. "Impact Evaluation Using Analysis of Covariance With Error-Prone Covariates That Violate Surrogacy," Evaluation Review, , vol. 43(6), pages 335-369, December.
    4. Hao Dong & Daniel L. Millimet, 2020. "Propensity Score Weighting with Mismeasured Covariates: An Application to Two Financial Literacy Interventions," JRFM, MDPI, vol. 13(11), pages 1-24, November.
    5. Di Shu & Grace Y. Yi, 2018. "Estimation of Causal Effect Measures in the Presence of Measurement Error in Confounders," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(1), pages 233-254, April.
    6. J. R. Lockwood & Daniel F. McCaffrey, 2017. "Simulation-Extrapolation with Latent Heteroskedastic Error Variance," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 717-736, September.
    7. Murray, Paula M. & Browne, Ryan P. & McNicholas, Paul D., 2017. "A mixture of SDB skew-t factor analyzers," Econometrics and Statistics, Elsevier, vol. 3(C), pages 160-168.
    8. Sharon X. Lee & Tsung-I Lin & Geoffrey J. McLachlan, 2021. "Mixtures of factor analyzers with scale mixtures of fundamental skew normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(2), pages 481-512, June.
    9. Hwanhee Hong & Kara E. Rudolph & Elizabeth A. Stuart, 2017. "Bayesian Approach for Addressing Differential Covariate Measurement Error in Propensity Score Methods," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1078-1096, December.
    10. Bryan Keller, 2020. "Variable Selection for Causal Effect Estimation: Nonparametric Conditional Independence Testing With Random Forests," Journal of Educational and Behavioral Statistics, , vol. 45(2), pages 119-142, April.
    11. Tsung-I Lin & I-An Chen & Wan-Lun Wang, 2023. "A robust factor analysis model based on the canonical fundamental skew-t distribution," Statistical Papers, Springer, vol. 64(2), pages 367-393, April.
    12. Ma, Xuan & Zhao, Jianhua & Wang, Yue & Shang, Changchun & Jiang, Fen, 2023. "Robust factored principal component analysis for matrix-valued outlier accommodation and detection," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    13. Hashemi, Farzane & Naderi, Mehrdad & Jamalizadeh, Ahad & Bekker, Andriette, 2021. "A flexible factor analysis based on the class of mean-mixture of normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    14. Kim, Hea-Jung, 2018. "Bayesian hierarchical robust factor analysis models for partially observed sample-selection data," Journal of Multivariate Analysis, Elsevier, vol. 164(C), pages 65-82.
    15. Nikolova, Milena & Roman, Monica & Zimmermann, Klaus F., 2017. "Left behind but doing good? Civic engagement in two post-socialist countries," Journal of Comparative Economics, Elsevier, vol. 45(3), pages 658-684.
    16. Maciej Berk{e}sewicz & Herman Cherniaiev & Robert Pater, 2021. "Estimating the number of entities with vacancies using administrative and online data," Papers 2106.03263, arXiv.org.
    17. Manabu Kuroki & Hisayoshi Nanmo, 2020. "Variance formulas for estimated mean response and predicted response with external intervention based on the back-door criterion in linear structural equation models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 667-685, December.
    18. Ying Cheng & Ke-Hai Yuan, 2010. "The Impact of Fallible Item Parameter Estimates on Latent Trait Recovery," Psychometrika, Springer;The Psychometric Society, vol. 75(2), pages 280-291, June.
    19. Alberto Maydeu-Olivares & Rosa Montaño, 2013. "How Should We Assess the Fit of Rasch-Type Models? Approximating the Power of Goodness-of-Fit Statistics in Categorical Data Analysis," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 116-133, January.
    20. Carolina Navarro & Luis Ayala & José Labeaga, 2010. "Housing deprivation and health status: evidence from Spain," Empirical Economics, Springer, vol. 38(3), pages 555-582, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:45:y:2020:i:5:p:598-636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.