IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v4y2008i1n5.html
   My bibliography  Save this article

Empirical Efficiency Maximization: Improved Locally Efficient Covariate Adjustment in Randomized Experiments and Survival Analysis

Author

Listed:
  • Rubin Daniel B

    (University of California, Berkeley)

  • van der Laan Mark J.

    (University of California, Berkeley)

Abstract

It has long been recognized that covariate adjustment can increase precision in randomized experiments, even when it is not strictly necessary. Adjustment is often straightforward when a discrete covariate partitions the sample into a handful of strata, but becomes more involved with even a single continuous covariate such as age. As randomized experiments remain a gold standard for scientific inquiry, and the information age facilitates a massive collection of baseline information, the longstanding problem of if and how to adjust for covariates is likely to engage investigators for the foreseeable future.In the locally efficient estimation approach introduced for general coarsened data structures by James Robins and collaborators, one first fits a relatively small working model, often with maximum likelihood, giving a nuisance parameter fit in an estimating equation for the parameter of interest. The usual advertisement is that the estimator will be asymptotically efficient if the working model is correct, but otherwise will still be consistent and asymptotically Gaussian.However, by applying standard likelihood-based fits to misspecified working models in covariate adjustment problems, one can poorly estimate the parameter of interest. We propose a new method, empirical efficiency maximization, to optimize the working model fit for the resulting parameter estimate.In addition to the randomized experiment setting, we show how our covariate adjustment procedure can be used in survival analysis applications. Numerical asymptotic efficiency calculations demonstrate gains relative to standard locally efficient estimators.

Suggested Citation

  • Rubin Daniel B & van der Laan Mark J., 2008. "Empirical Efficiency Maximization: Improved Locally Efficient Covariate Adjustment in Randomized Experiments and Survival Analysis," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-42, May.
  • Handle: RePEc:bpj:ijbist:v:4:y:2008:i:1:n:5
    DOI: 10.2202/1557-4679.1084
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1557-4679.1084
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1557-4679.1084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel O. Scharfstein, 2002. "Estimation of the failure time distribution in the presence of informative censoring," Biometrika, Biometrika Trust, vol. 89(3), pages 617-634, August.
    2. Satten, Glen A. & Datta, Somnath & Robins, James, 2001. "Estimating the marginal survival function in the presence of time dependent covariates," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 397-403, October.
    3. David Clayton & David Spiegelhalter & Graham Dunn & Andrew Pickles, 1998. "Analysis of longitudinal binary data from multiphase sampling," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 71-87.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianxuan Liu & Yanyuan Ma & Lan Wang, 2018. "An alternative robust estimator of average treatment effect in causal inference," Biometrics, The International Biometric Society, vol. 74(3), pages 910-923, September.
    2. Scott, Anthony & Taylor, Tamara & Russell, Grant & Sutton, Matt, 2024. "Associations between corporate ownership of primary care providers and doctor wellbeing, workload, access, organizational efficiency, and service quality," Health Policy, Elsevier, vol. 142(C).
    3. Gruber Susan & van der Laan Mark J., 2012. "Targeted Minimum Loss Based Estimator that Outperforms a given Estimator," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-22, May.
    4. Rosenblum Michael & van der Laan Mark J., 2010. "Simple, Efficient Estimators of Treatment Effects in Randomized Trials Using Generalized Linear Models to Leverage Baseline Variables," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-44, April.
    5. Porter Kristin E. & Gruber Susan & van der Laan Mark J. & Sekhon Jasjeet S., 2011. "The Relative Performance of Targeted Maximum Likelihood Estimators," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-34, August.
    6. van der Laan Mark J., 2010. "Targeted Maximum Likelihood Based Causal Inference: Part I," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-45, February.
    7. Edwards, Ben & Yu, Maggie, 2018. "The influence of child care on the behavior problems of children of teenage mothers," Children and Youth Services Review, Elsevier, vol. 94(C), pages 96-104.
    8. Giorgio Brunello & Lorenzo Rocco, 2017. "The Labor Market Effects of Academic and Vocational Education over the Life Cycle: Evidence Based on a British Cohort," Journal of Human Capital, University of Chicago Press, vol. 11(1), pages 106-166.
    9. Wei Zhang & Zhiwei Zhang & Aiyi Liu, 2023. "Optimizing treatment allocation in randomized clinical trials by leveraging baseline covariates," Biometrics, The International Biometric Society, vol. 79(4), pages 2815-2829, December.
    10. Wang, Qihua & Su, Miaomiao & Wang, Ruoyu, 2021. "A beyond multiple robust approach for missing response problem," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    11. Tan, Zhiqiang, 2014. "Second-order asymptotic theory for calibration estimators in sampling and missing-data problems," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 240-253.
    12. Rubin Daniel B. & van der Laan Mark J., 2012. "Statistical Issues and Limitations in Personalized Medicine Research with Clinical Trials," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-20, July.
    13. David Benkeser & Iván Díaz & Alex Luedtke & Jodi Segal & Daniel Scharfstein & Michael Rosenblum, 2021. "Improving precision and power in randomized trials for COVID‐19 treatments using covariate adjustment, for binary, ordinal, and time‐to‐event outcomes," Biometrics, The International Biometric Society, vol. 77(4), pages 1467-1481, December.
    14. repec:bla:istatr:v:83:y:2015:i:3:p:449-471 is not listed on IDEAS
    15. Peisong Han, 2016. "Intrinsic efficiency and multiple robustness in longitudinal studies with drop-out," Biometrika, Biometrika Trust, vol. 103(3), pages 683-700.
    16. Ruoyao Shi, 2021. "An Averaging Estimator for Two Step M Estimation in Semiparametric Models," Working Papers 202105, University of California at Riverside, Department of Economics.
    17. Vermeulen Karel & Vansteelandt Stijn, 2016. "Data-Adaptive Bias-Reduced Doubly Robust Estimation," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 253-282, May.
    18. Zhiwei Zhang & Zhen Chen & James F. Troendle & Jun Zhang, 2012. "Causal Inference on Quantiles with an Obstetric Application," Biometrics, The International Biometric Society, vol. 68(3), pages 697-706, September.
    19. van der Laan Mark J. & Gruber Susan, 2010. "Collaborative Double Robust Targeted Maximum Likelihood Estimation," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-71, May.
    20. Ao Yuan & Anqi Yin & Ming T. Tan, 2021. "Enhanced Doubly Robust Procedure for Causal Inference," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(3), pages 454-478, December.
    21. Nicholas Williams & Michael Rosenblum & Iván Díaz, 2022. "Optimising precision and power by machine learning in randomised trials with ordinal and time‐to‐event outcomes with an application to COVID‐19," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2156-2178, October.
    22. Guo, Xu & Fang, Yun & Zhu, Xuehu & Xu, Wangli & Zhu, Lixing, 2018. "Semiparametric double robust and efficient estimation for mean functionals with response missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 325-339.
    23. Helene Boistard & Guillaume Chauvet & David Haziza, 2016. "Doubly Robust Inference for the Distribution Function in the Presence of Missing Survey Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 683-699, September.
    24. Han, Peisong, 2012. "A note on improving the efficiency of inverse probability weighted estimator using the augmentation term," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2221-2228.
    25. Peisong Han, 2016. "Combining Inverse Probability Weighting and Multiple Imputation to Improve Robustness of Estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 246-260, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard J. Cook & Jerald F. Lawless, 2020. "Failure time studies with intermittent observation and losses to follow‐up," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1035-1063, December.
    2. Greg DiRienzo, 2004. "Nonparametric Comparison of Two Survival-Time Distributions in the Presence of Dependent Censoring," Harvard University Biostatistics Working Paper Series 1000, Berkeley Electronic Press.
    3. A. G. DiRienzo, 2003. "Nonparametric Comparison of Two Survival-Time Distributions in the Presence of Dependent Censoring," Biometrics, The International Biometric Society, vol. 59(3), pages 497-504, September.
    4. Tchetgen Tchetgen, Eric J. & Robins, James, 2012. "On parametrization, robustness and sensitivity analysis in a marginal structural Cox proportional hazards model for point exposure," Statistics & Probability Letters, Elsevier, vol. 82(5), pages 907-915.
    5. Sedigheh Mirzaei Salehabadi & Debasis Sengupta & Rituparna Das, 2015. "Parametric Estimation of Menarcheal Age Distribution Based on Recall Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 290-305, March.
    6. Miran A. Jaffa & Ayad A. Jaffa, 2019. "A Likelihood-Based Approach with Shared Latent Random Parameters for the Longitudinal Binary and Informative Censoring Processes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 597-613, December.
    7. Fotios Siannis, 2004. "Applications of a Parametric Model for Informative Censoring," Biometrics, The International Biometric Society, vol. 60(3), pages 704-714, September.
    8. Maja Pohar Perme & Janez Stare & Jacques Estève, 2012. "On Estimation in Relative Survival," Biometrics, The International Biometric Society, vol. 68(1), pages 113-120, March.
    9. repec:jss:jstsof:43:i13 is not listed on IDEAS
    10. Ungolo, Francesco & van den Heuvel, Edwin R., 2024. "A Dirichlet process mixture regression model for the analysis of competing risk events," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 95-113.
    11. Shen, Pao-sheng, 2010. "Semiparametric estimation of survival function when data are subject to dependent censoring and left truncation," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 161-168, February.
    12. Fan, Jie & Datta, Somnath, 2011. "Fitting marginal accelerated failure time models to clustered survival data with potentially informative cluster size," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3295-3303, December.
    13. Somnath Datta & Glen A. Satten, 2002. "Estimation of Integrated Transition Hazards and Stage Occupation Probabilities for Non-Markov Systems Under Dependent Censoring," Biometrics, The International Biometric Society, vol. 58(4), pages 792-802, December.
    14. Limin Peng & Jason P. Fine, 2007. "Regression Modeling of Semicompeting Risks Data," Biometrics, The International Biometric Society, vol. 63(1), pages 96-108, March.
    15. Lois G. Kim & Simon G. Thompson, 2011. "Estimation of life‐years gained and cost effectiveness based on cause‐specific mortality," Health Economics, John Wiley & Sons, Ltd., vol. 20(7), pages 842-852, July.
    16. Xuelin Huang & Nan Zhang, 2008. "Regression Survival Analysis with an Assumed Copula for Dependent Censoring: A Sensitivity Analysis Approach," Biometrics, The International Biometric Society, vol. 64(4), pages 1090-1099, December.
    17. Datta, Somnath & Satten, Glen A., 2001. "Validity of the Aalen-Johansen estimators of stage occupation probabilities and Nelson-Aalen estimators of integrated transition hazards for non-Markov models," Statistics & Probability Letters, Elsevier, vol. 55(4), pages 403-411, December.
    18. Shen-Ming Lee & T. Martin Lukusa & Chin-Shang Li, 2020. "Estimation of a zero-inflated Poisson regression model with missing covariates via nonparametric multiple imputation methods," Computational Statistics, Springer, vol. 35(2), pages 725-754, June.
    19. Shu Yang & Yilong Zhang & Guanghan Frank Liu & Qian Guan, 2023. "SMIM: A unified framework of survival sensitivity analysis using multiple imputation and martingale," Biometrics, The International Biometric Society, vol. 79(1), pages 230-240, March.
    20. Subramanian, Sundarraman & Bandyopadhyay, Dipankar, 2010. "Doubly robust semiparametric estimation for the missing censoring indicator model," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 621-630, April.
    21. Brent A. Johnson & Anastasios A. Tsiatis, 2004. "Estimating Mean Response as a Function of Treatment Duration in an Observational Study, Where Duration May Be Informatively Censored," Biometrics, The International Biometric Society, vol. 60(2), pages 315-323, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:4:y:2008:i:1:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.