IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v12y2016i1p283-303n3.html
   My bibliography  Save this article

Optimal Individualized Treatments in Resource-Limited Settings

Author

Listed:
  • Luedtke Alexander R.

    (Division of Biostatistics, University of California, 101 Haviland Hall, Berkeley, California 94720–7358, USA)

  • van der Laan Mark J.

    (Division of Biostatistics, University of California, 101 Haviland Hall, Berkeley, California 94720–7358, USA)

Abstract

An individualized treatment rule (ITR) is a treatment rule which assigns treatments to individuals based on (a subset of) their measured covariates. An optimal ITR is the ITR which maximizes the population mean outcome. Previous works in this area have assumed that treatment is an unlimited resource so that the entire population can be treated if this strategy maximizes the population mean outcome. We consider optimal ITRs in settings where the treatment resource is limited so that there is a maximum proportion of the population which can be treated. We give a general closed-form expression for an optimal stochastic ITR in this resource-limited setting, and a closed-form expression for the optimal deterministic ITR under an additional assumption. We also present an estimator of the mean outcome under the optimal stochastic ITR in a large semiparametric model that at most places restrictions on the probability of treatment assignment given covariates. We give conditions under which our estimator is efficient among all regular and asymptotically linear estimators. All of our results are supported by simulations.

Suggested Citation

  • Luedtke Alexander R. & van der Laan Mark J., 2016. "Optimal Individualized Treatments in Resource-Limited Settings," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 283-303, May.
  • Handle: RePEc:bpj:ijbist:v:12:y:2016:i:1:p:283-303:n:3
    DOI: 10.1515/ijb-2015-0007
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/ijb-2015-0007
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/ijb-2015-0007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. A. Murphy, 2003. "Optimal dynamic treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 331-355, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    2. Jelena Bradic & Victor Chernozhukov & Whitney K. Newey & Yinchu Zhu, 2019. "Minimax Semiparametric Learning With Approximate Sparsity," Papers 1912.12213, arXiv.org, revised Aug 2022.
    3. Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "Automatic Debiased Machine Learning via Riesz Regression," Papers 2104.14737, arXiv.org, revised Mar 2024.
    4. Zhen Li & Jie Chen & Eric Laber & Fang Liu & Richard Baumgartner, 2023. "Optimal Treatment Regimes: A Review and Empirical Comparison," International Statistical Review, International Statistical Institute, vol. 91(3), pages 427-463, December.
    5. Aaron L. Sarvet & Kerollos N. Wanis & Jessica G. Young & Roberto Hernandez‐Alejandro & Mats J. Stensrud, 2023. "Longitudinal incremental propensity score interventions for limited resource settings," Biometrics, The International Biometric Society, vol. 79(4), pages 3418-3430, December.
    6. Yanqing Wang & Yingqi Zhao & Yingye Zheng, 2022. "Targeted Search for Individualized Clinical Decision Rules to Optimize Clinical Outcomes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 564-581, December.
    7. Victor Chernozhukov & Whitney K. Newey & Rahul Singh, 2022. "Automatic Debiased Machine Learning of Causal and Structural Effects," Econometrica, Econometric Society, vol. 90(3), pages 967-1027, May.
    8. Yanqing Wang & Ying‐Qi Zhao & Yingye Zheng, 2020. "Learning‐based biomarker‐assisted rules for optimized clinical benefit under a risk constraint," Biometrics, The International Biometric Society, vol. 76(3), pages 853-862, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Q. Clairon & R. Henderson & N. J. Young & E. D. Wilson & C. J. Taylor, 2021. "Adaptive treatment and robust control," Biometrics, The International Biometric Society, vol. 77(1), pages 223-236, March.
    2. Jin Wang & Donglin Zeng & D. Y. Lin, 2022. "Semiparametric single-index models for optimal treatment regimens with censored outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 744-763, October.
    3. Shonosuke Sugasawa & Hisashi Noma, 2021. "Efficient screening of predictive biomarkers for individual treatment selection," Biometrics, The International Biometric Society, vol. 77(1), pages 249-257, March.
    4. Ji Liu, 2024. "Education legislations that equalize: a study of compulsory schooling law reforms in post-WWII United States," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    5. Jingxiang Chen & Yufeng Liu & Donglin Zeng & Rui Song & Yingqi Zhao & Michael R. Kosorok, 2016. "Comment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 942-947, July.
    6. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    7. Han, Sukjin, 2021. "Identification in nonparametric models for dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 225(2), pages 132-147.
    8. Durlauf, Steven N. & Navarro, Salvador & Rivers, David A., 2016. "Model uncertainty and the effect of shall-issue right-to-carry laws on crime," European Economic Review, Elsevier, vol. 81(C), pages 32-67.
    9. Kastoryano, Stephen, 2024. "Biological, Behavioural and Spurious Selection on the Kidney Transplant Waitlist," IZA Discussion Papers 16995, Institute of Labor Economics (IZA).
    10. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
    11. Yufan Zhao & Donglin Zeng & Mark A. Socinski & Michael R. Kosorok, 2011. "Reinforcement Learning Strategies for Clinical Trials in Nonsmall Cell Lung Cancer," Biometrics, The International Biometric Society, vol. 67(4), pages 1422-1433, December.
    12. Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
    13. Anders Bredahl Kock & Martin Thyrsgaard, 2017. "Optimal sequential treatment allocation," Papers 1705.09952, arXiv.org, revised Aug 2018.
    14. Yusuke Narita, 2018. "Toward an Ethical Experiment," Cowles Foundation Discussion Papers 2127, Cowles Foundation for Research in Economics, Yale University.
    15. Xin Qiu & Donglin Zeng & Yuanjia Wang, 2018. "Estimation and evaluation of linear individualized treatment rules to guarantee performance," Biometrics, The International Biometric Society, vol. 74(2), pages 517-528, June.
    16. Yiwang Zhou & Peter X.K. Song & Haoda Fu, 2021. "Net benefit index: Assessing the influence of a biomarker for individualized treatment rules," Biometrics, The International Biometric Society, vol. 77(4), pages 1254-1264, December.
    17. Ruoqing Zhu & Ying-Qi Zhao & Guanhua Chen & Shuangge Ma & Hongyu Zhao, 2017. "Greedy outcome weighted tree learning of optimal personalized treatment rules," Biometrics, The International Biometric Society, vol. 73(2), pages 391-400, June.
    18. Zeyu Bian & Erica E. M. Moodie & Susan M. Shortreed & Sahir Bhatnagar, 2023. "Variable selection in regression‐based estimation of dynamic treatment regimes," Biometrics, The International Biometric Society, vol. 79(2), pages 988-999, June.
    19. Thomas A. Murray & Peter F. Thall & Ying Yuan & Sarah McAvoy & Daniel R. Gomez, 2017. "Robust Treatment Comparison Based on Utilities of Semi-Competing Risks in Non-Small-Cell Lung Cancer," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 11-23, January.
    20. Zehua Yang & Victoria C. P. Chen & Michael E. Chang & Melanie L. Sattler & Aihong Wen, 2009. "A Decision-Making Framework for Ozone Pollution Control," Operations Research, INFORMS, vol. 57(2), pages 484-498, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:12:y:2016:i:1:p:283-303:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.