IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v12y2016i1p157-177n7.html
   My bibliography  Save this article

Influence Re-weighted G-Estimation

Author

Listed:
  • Rich Benjamin

    (Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada)

  • Moodie Erica E. M.

    (Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada)

  • A. Stephens David

    (Department of Mathematics and Statistics, McGill University, Montreal, QC, Canada)

Abstract

Individualized medicine is an area that is growing, both in clinical and statistical settings, where in the latter, personalized treatment strategies are often referred to as dynamic treatment regimens. Estimation of the optimal dynamic treatment regime has focused primarily on semi-parametric approaches, some of which are said to be doubly robust in that they give rise to consistent estimators provided at least one of two models is correctly specified. In particular, the locally efficient doubly robust g-estimation is robust to misspecification of the treatment-free outcome model so long as the propensity model is specified correctly, at the cost of an increase in variability. In this paper, we propose data-adaptive weighting schemes that serve to decrease the impact of influential points and thus stabilize the estimator. In doing so, we provide a doubly robust g-estimator that is also robust in the sense of Hampel (15).

Suggested Citation

  • Rich Benjamin & Moodie Erica E. M. & A. Stephens David, 2016. "Influence Re-weighted G-Estimation," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 157-177, May.
  • Handle: RePEc:bpj:ijbist:v:12:y:2016:i:1:p:157-177:n:7
    DOI: 10.1515/ijb-2015-0015
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/ijb-2015-0015
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/ijb-2015-0015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erica E. M. Moodie & Thomas S. Richardson & David A. Stephens, 2007. "Demystifying Optimal Dynamic Treatment Regimes," Biometrics, The International Biometric Society, vol. 63(2), pages 447-455, June.
    2. van der Laan Mark J. & Petersen Maya L, 2007. "Causal Effect Models for Realistic Individualized Treatment and Intention to Treat Rules," The International Journal of Biostatistics, De Gruyter, vol. 3(1), pages 1-55, March.
    3. S. A. Murphy, 2003. "Optimal dynamic treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 331-355, May.
    4. Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
    5. Orellana Liliana & Rotnitzky Andrea & Robins James M., 2010. "Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part I: Main Content," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-49, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Q. Clairon & R. Henderson & N. J. Young & E. D. Wilson & C. J. Taylor, 2021. "Adaptive treatment and robust control," Biometrics, The International Biometric Society, vol. 77(1), pages 223-236, March.
    2. Xiaofei Bai & Anastasios A. Tsiatis & Wenbin Lu & Rui Song, 2017. "Optimal treatment regimes for survival endpoints using a locally-efficient doubly-robust estimator from a classification perspective," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 585-604, October.
    3. Zhen Li & Jie Chen & Eric Laber & Fang Liu & Richard Baumgartner, 2023. "Optimal Treatment Regimes: A Review and Empirical Comparison," International Statistical Review, International Statistical Institute, vol. 91(3), pages 427-463, December.
    4. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    5. Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
    6. Ruoqing Zhu & Ying-Qi Zhao & Guanhua Chen & Shuangge Ma & Hongyu Zhao, 2017. "Greedy outcome weighted tree learning of optimal personalized treatment rules," Biometrics, The International Biometric Society, vol. 73(2), pages 391-400, June.
    7. Lingyun Lyu & Yu Cheng & Abdus S. Wahed, 2023. "Imputation‐based Q‐learning for optimizing dynamic treatment regimes with right‐censored survival outcome," Biometrics, The International Biometric Society, vol. 79(4), pages 3676-3689, December.
    8. Peng Wu & Donglin Zeng & Haoda Fu & Yuanjia Wang, 2020. "On using electronic health records to improve optimal treatment rules in randomized trials," Biometrics, The International Biometric Society, vol. 76(4), pages 1075-1086, December.
    9. Biernot Peter & Moodie Erica E. M., 2010. "A Comparison of Variable Selection Approaches for Dynamic Treatment Regimes," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-20, January.
    10. Qizhao Chen & Morgane Austern & Vasilis Syrgkanis, 2023. "Inference on Optimal Dynamic Policies via Softmax Approximation," Papers 2303.04416, arXiv.org, revised Dec 2023.
    11. Wei Liu & Zhiwei Zhang & Lei Nie & Guoxing Soon, 2017. "A Case Study in Personalized Medicine: Rilpivirine Versus Efavirenz for Treatment-Naive HIV Patients," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1381-1392, October.
    12. Jacqueline A. Mauro & Edward H. Kennedy & Daniel Nagin, 2020. "Instrumental variable methods using dynamic interventions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1523-1551, October.
    13. van der Laan Mark J., 2010. "Targeted Maximum Likelihood Based Causal Inference: Part I," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-45, February.
    14. van der Laan Mark J. & Gruber Susan, 2010. "Collaborative Double Robust Targeted Maximum Likelihood Estimation," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-71, May.
    15. Sies Aniek & Van Mechelen Iven, 2017. "Comparing Four Methods for Estimating Tree-Based Treatment Regimes," The International Journal of Biostatistics, De Gruyter, vol. 13(1), pages 1-20, May.
    16. Hongming Pu & Bo Zhang, 2021. "Estimating optimal treatment rules with an instrumental variable: A partial identification learning approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 318-345, April.
    17. Jiacheng Wu & Nina Galanter & Susan M. Shortreed & Erica E.M. Moodie, 2022. "Ranking tailoring variables for constructing individualized treatment rules: An application to schizophrenia," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 309-330, March.
    18. Davide Viviano & Jelena Bradic, 2020. "Fair Policy Targeting," Papers 2005.12395, arXiv.org, revised Jun 2022.
    19. Yuqian Zhang & Weijie Ji & Jelena Bradic, 2021. "Dynamic treatment effects: high-dimensional inference under model misspecification," Papers 2111.06818, arXiv.org, revised Jun 2023.
    20. Chaffee Paul H. & van der Laan Mark J., 2012. "Targeted Maximum Likelihood Estimation for Dynamic Treatment Regimes in Sequentially Randomized Controlled Trials," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-32, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:12:y:2016:i:1:p:157-177:n:7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.