A Bayesian group sequential small n sequential multiple‐assignment randomized trial
Author
Abstract
Suggested Citation
DOI: 10.1111/rssc.12406
Download full text from publisher
References listed on IDEAS
- D. Magirr & T. Jaki & J. Whitehead, 2012. "A generalized Dunnett test for multi-arm multi-stage clinical studies with treatment selection," Biometrika, Biometrika Trust, vol. 99(2), pages 494-501.
- S. A. Murphy, 2003. "Optimal dynamic treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 331-355, May.
- P. W. Lavori & R. Dawson, 2000. "A design for testing clinical strategies: biased adaptive within‐subject randomization," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 163(1), pages 29-38.
- Guosheng Yin & Nan Chen & J. Jack Lee, 2012. "Phase II trial design with Bayesian adaptive randomization and predictive probability," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(2), pages 219-235, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cole Manschot & Eric Laber & Marie Davidian, 2023. "Interim monitoring of sequential multiple assignment randomized trials using partial information," Biometrics, The International Biometric Society, vol. 79(4), pages 2881-2894, December.
- Sidi Wang & Kelley M. Kidwell & Satrajit Roychoudhury, 2023. "Dynamic enrichment of Bayesian small‐sample, sequential, multiple assignment randomized trial design using natural history data: a case study from Duchenne muscular dystrophy," Biometrics, The International Biometric Society, vol. 79(4), pages 3612-3623, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jin Wang & Donglin Zeng & D. Y. Lin, 2022. "Semiparametric single-index models for optimal treatment regimens with censored outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 744-763, October.
- Stephens Alisa & Keele Luke & Joffe Marshall, 2016. "Generalized Structural Mean Models for Evaluating Depression as a Post-treatment Effect Modifier of a Jobs Training Intervention," Journal of Causal Inference, De Gruyter, vol. 4(2), pages 1-17, September.
- Bibhas Chakraborty & Eric B. Laber & Yingqi Zhao, 2013. "Inference for Optimal Dynamic Treatment Regimes Using an Adaptive m-Out-of-n Bootstrap Scheme," Biometrics, The International Biometric Society, vol. 69(3), pages 714-723, September.
- Stephens Alisa & Joffe Marshall & Keele Luke, 2016. "Generalized Structural Mean Models for Evaluating Depression as a Post-treatment Effect Modifier of a Jobs Training Intervention," Journal of Causal Inference, De Gruyter, vol. 4(2), pages 1, September.
- van der Laan Mark J., 2010. "Targeted Maximum Likelihood Based Causal Inference: Part I," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-45, February.
- Giorgos Bakoyannis, 2023. "Estimating optimal individualized treatment rules with multistate processes," Biometrics, The International Biometric Society, vol. 79(4), pages 2830-2842, December.
- Erica E. M. Moodie & Thomas S. Richardson & David A. Stephens, 2007. "Demystifying Optimal Dynamic Treatment Regimes," Biometrics, The International Biometric Society, vol. 63(2), pages 447-455, June.
- Kristin A. Linn & Eric B. Laber & Leonard A. Stefanski, 2017. "Interactive -Learning for Quantiles," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 638-649, April.
- Q. Clairon & R. Henderson & N. J. Young & E. D. Wilson & C. J. Taylor, 2021. "Adaptive treatment and robust control," Biometrics, The International Biometric Society, vol. 77(1), pages 223-236, March.
- Shonosuke Sugasawa & Hisashi Noma, 2021. "Efficient screening of predictive biomarkers for individual treatment selection," Biometrics, The International Biometric Society, vol. 77(1), pages 249-257, March.
- Jingxiang Chen & Yufeng Liu & Donglin Zeng & Rui Song & Yingqi Zhao & Michael R. Kosorok, 2016. "Comment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 942-947, July.
- Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
- Han, Sukjin, 2021.
"Identification in nonparametric models for dynamic treatment effects,"
Journal of Econometrics, Elsevier, vol. 225(2), pages 132-147.
- Sukjin Han, 2018. "Identification in Nonparametric Models for Dynamic Treatment Effects," Papers 1805.09397, arXiv.org, revised Jan 2019.
- Durlauf, Steven N. & Navarro, Salvador & Rivers, David A., 2016.
"Model uncertainty and the effect of shall-issue right-to-carry laws on crime,"
European Economic Review, Elsevier, vol. 81(C), pages 32-67.
- Steven N. Durlauf & Salvador Navarro & David A. Rivers, 2014. "Model Uncertainty and the Effect of Shall-Issue Right-to-Carry Laws on Crime," University of Western Ontario, Centre for Human Capital and Productivity (CHCP) Working Papers 20144, University of Western Ontario, Centre for Human Capital and Productivity (CHCP).
- Steven N. Durlauf & Salvador Navarro & David A. Rivers, 2015. "Model Uncertainty and the Effect of Shall-Issue Right-to-Carry Laws on Crime," NBER Working Papers 21566, National Bureau of Economic Research, Inc.
- Kastoryano, Stephen, 2024. "Biological, Behavioural and Spurious Selection on the Kidney Transplant Waitlist," IZA Discussion Papers 16995, Institute of Labor Economics (IZA).
- Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021.
"Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence,"
The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," IZA Discussion Papers 12039, Institute of Labor Economics (IZA).
- Lechner, Michael & Knaus, Michael C. & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," CEPR Discussion Papers 13402, C.E.P.R. Discussion Papers.
- Knaus, Michael C. & Lechner, Michael & anthony.strittmatter@unisg.ch, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Economics Working Paper Series 1817, University of St. Gallen, School of Economics and Political Science.
- Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Papers 1810.13237, arXiv.org, revised Dec 2018.
- Yufan Zhao & Donglin Zeng & Mark A. Socinski & Michael R. Kosorok, 2011. "Reinforcement Learning Strategies for Clinical Trials in Nonsmall Cell Lung Cancer," Biometrics, The International Biometric Society, vol. 67(4), pages 1422-1433, December.
- Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
- Anders Bredahl Kock & Martin Thyrsgaard, 2017. "Optimal sequential treatment allocation," Papers 1705.09952, arXiv.org, revised Aug 2018.
- Yusuke Narita, 2018. "Toward an Ethical Experiment," Cowles Foundation Discussion Papers 2127, Cowles Foundation for Research in Economics, Yale University.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:69:y:2020:i:3:p:663-680. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.