IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v69y2007i4p565-588.html
   My bibliography  Save this article

Estimating the effect of treatment in a proportional hazards model in the presence of non‐compliance and contamination

Author

Listed:
  • Jack Cuzick
  • Peter Sasieni
  • Jonathan Myles
  • Jonathan Tyrer

Abstract

Summary. Methods for adjusting for non‐compliance and contamination, which respect the randomization, are extended from binary outcomes to time‐to‐event analyses by using a proportional hazards model. A simple non‐iterative method is developed when there are no covariates, which is a generalization of the Mantel–Haenszel estimator. More generally, a ‘partial likelihood’ is developed which accommodates covariates under the assumption that they are independent of compliance. A key feature is that the proportion of contaminators and non‐compliers in the risk set is updated at each failure time. When covariates are not independent of compliance, a full likelihood is developed and explored, but this leads to a complex estimator. Estimating equations and information matrices are derived for these estimators and they are evaluated by simulation studies.

Suggested Citation

  • Jack Cuzick & Peter Sasieni & Jonathan Myles & Jonathan Tyrer, 2007. "Estimating the effect of treatment in a proportional hazards model in the presence of non‐compliance and contamination," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 565-588, September.
  • Handle: RePEc:bla:jorssb:v:69:y:2007:i:4:p:565-588
    DOI: 10.1111/j.1467-9868.2007.00600.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2007.00600.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2007.00600.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephens Alisa & Keele Luke & Joffe Marshall, 2016. "Generalized Structural Mean Models for Evaluating Depression as a Post-treatment Effect Modifier of a Jobs Training Intervention," Journal of Causal Inference, De Gruyter, vol. 4(2), pages 1-17, September.
    2. Linbo Wang & Eric Tchetgen Tchetgen & Torben Martinussen & Stijn Vansteelandt, 2023. "Instrumental variable estimation of the causal hazard ratio," Biometrics, The International Biometric Society, vol. 79(2), pages 539-550, June.
    3. Torben Martinussen & Stijn Vansteelandt & Eric J. Tchetgen Tchetgen & David M. Zucker, 2017. "Instrumental variables estimation of exposure effects on a time‐to‐event endpoint using structural cumulative survival models," Biometrics, The International Biometric Society, vol. 73(4), pages 1140-1149, December.
    4. Bo Wei & Limin Peng & Mei‐Jie Zhang & Jason P. Fine, 2021. "Estimation of causal quantile effects with a binary instrumental variable and censored data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 559-578, July.
    5. Shuwei Li & Limin Peng, 2023. "Instrumental variable estimation of complier causal treatment effect with interval‐censored data," Biometrics, The International Biometric Society, vol. 79(1), pages 253-263, March.
    6. VanderWeele Tyler J, 2011. "Principal Stratification -- Uses and Limitations," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-14, July.
    7. Govert E. Bijwaard & Andrew M. Jones, 2024. "Regression discontinuity design with principal stratification in the mixed proportional hazard model: an application to the long-run impact of education on longevity," Empirical Economics, Springer, vol. 67(1), pages 197-223, July.
    8. Abualbishr Alshreef & Nicholas Latimer & Paul Tappenden & Ruth Wong & Dyfrig Hughes & James Fotheringham & Simon Dixon, 2019. "Statistical Methods for Adjusting Estimates of Treatment Effectiveness for Patient Nonadherence in the Context of Time-to-Event Outcomes and Health Technology Assessment: A Systematic Review of Method," Medical Decision Making, , vol. 39(8), pages 910-925, November.
    9. Shengli An & Peter Zhang & Hong-Bin Fang, 2023. "Subgroup Identification in Survival Outcome Data Based on Concordance Probability Measurement," Mathematics, MDPI, vol. 11(13), pages 1-10, June.
    10. Anna M. Wilke & Donald P. Green & Jasper Cooper, 2020. "A placebo design to detect spillovers from an education–entertainment experiment in Uganda," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1075-1096, June.
    11. Hui Nie & Jing Cheng & Dylan S. Small, 2011. "Inference for the Effect of Treatment on Survival Probability in Randomized Trials with Noncompliance and Administrative Censoring," Biometrics, The International Biometric Society, vol. 67(4), pages 1397-1405, December.
    12. Ditte Nørbo Sørensen & Torben Martinussen & Eric Tchetgen Tchetgen, 2019. "A causal proportional hazards estimator under homogeneous or heterogeneous selection in an IV setting," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 639-659, October.
    13. Stephens Alisa & Joffe Marshall & Keele Luke, 2016. "Generalized Structural Mean Models for Evaluating Depression as a Post-treatment Effect Modifier of a Jobs Training Intervention," Journal of Causal Inference, De Gruyter, vol. 4(2), pages 1, September.
    14. L. Altstein & G. Li, 2013. "Latent Subgroup Analysis of a Randomized Clinical Trial through a Semiparametric Accelerated Failure Time Mixture Model," Biometrics, The International Biometric Society, vol. 69(1), pages 52-61, March.
    15. Bijwaard, G.E.; & Jones, A.M.;, 2019. "Education and life-expectancy and how the relationship is mediated through changes in behaviour: a principal stratification approach for hazard rates," Health, Econometrics and Data Group (HEDG) Working Papers 19/05, HEDG, c/o Department of Economics, University of York.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:69:y:2007:i:4:p:565-588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.