IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v9y2020i3ne370.html
   My bibliography  Save this article

Cost comparison and optimization of gas electric hybrid heat pumps

Author

Listed:
  • Tara S. Amirkhizi
  • Ida G. Jensen

Abstract

The residential heating sector can offer significant load‐shifting possibilities to the energy system. Currently 400,000 households in Denmark are heated by natural gas boilers. The power consumption corresponding to these boilers can offer high value to the stabilization of the wind intensive Danish energy system. Gas electric hybrid heat pumps (GEHHPs) are individual heat pumps consisting of an electric heat pump and a gas boiler. They enable a fully flexible operation of electric heat pumps by supplementing electricity with gas when necessary. In this paper, we construct a cost optimization model of a GEHHP and compare the levelized cost of heat of this system with other individual heating systems. We investigate the changes in the operation schedule of the GEHHP, both from a socio‐ and a private‐economic perspective, and analyze how certain economic and technological framework conditions influence their operation schedule. Our article shows that the end‐consumer's optimal operation schedule uses the gas boiler component of the GEHHP 24% of the time. Additionally, comparing the levelized cost of heat of the GEHHP with other heating alternatives proves that the GEHHP setup is the most cost efficient individual heating alternative. This article is categorized under: Energy Systems Analysis > Economics and Policy Energy Systems Economics > Economics and Policy Energy Systems Economics > Systems and Infrastructure

Suggested Citation

  • Tara S. Amirkhizi & Ida G. Jensen, 2020. "Cost comparison and optimization of gas electric hybrid heat pumps," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(3), May.
  • Handle: RePEc:bla:wireae:v:9:y:2020:i:3:n:e370
    DOI: 10.1002/wene.370
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.370
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.370?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Heinen, Steve & Burke, Daniel & O'Malley, Mark, 2016. "Electricity, gas, heat integration via residential hybrid heating technologies – An investment model assessment," Energy, Elsevier, vol. 109(C), pages 906-919.
    2. Møller Sneum, Daniel & Sandberg, Eli & Koduvere, Hardi & Olsen, Ole Jess & Blumberga, Dagnija, 2018. "Policy incentives for flexible district heating in the Baltic countries," Utilities Policy, Elsevier, vol. 51(C), pages 61-72.
    3. Bergaentzlé, Claire & Jensen, Ida Græsted & Skytte, Klaus & Olsen, Ole Jess, 2019. "Electricity grid tariffs as a tool for flexible energy systems: A Danish case study," Energy Policy, Elsevier, vol. 126(C), pages 12-21.
    4. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    5. Fischer, David & Madani, Hatef, 2017. "On heat pumps in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 342-357.
    6. Marilyn A. Brown & Shan Zhou & Majid Ahmadi, 2018. "Smart grid governance: An international review of evolving policy issues and innovations," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(5), September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beccali, Marco & Bonomolo, Marina & Martorana, Francesca & Catrini, Pietro & Buscemi, Alessandro, 2022. "Electrical hybrid heat pumps assisted by natural gas boilers: a review," Applied Energy, Elsevier, vol. 322(C).
    2. Østergaard, Poul Alberg & Andersen, Anders N., 2021. "Variable taxes promoting district heating heat pump flexibility," Energy, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter D. Lund & Klaus Skytte & Simon Bolwig & Torjus Folsland Bolkesjö & Claire Bergaentzlé & Philipp Andreas Gunkel & Jon Gustav Kirkerud & Antje Klitkou & Hardi Koduvere & Armands Gravelsins & Dagni, 2019. "Pathway Analysis of a Zero-Emission Transition in the Nordic-Baltic Region," Energies, MDPI, vol. 12(17), pages 1-20, August.
    2. Pinto, Edwin S. & Gronier, Timothé & Franquet, Erwin & Serra, Luis M., 2023. "Opportunities and economic assessment for a third-party delivering electricity, heat and cold to residential buildings," Energy, Elsevier, vol. 272(C).
    3. Omais Abdur Rehman & Valeria Palomba & Andrea Frazzica & Luisa F. Cabeza, 2021. "Enabling Technologies for Sector Coupling: A Review on the Role of Heat Pumps and Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-30, December.
    4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    6. Nolting, Lars & Praktiknjo, Aaron, 2019. "Techno-economic analysis of flexible heat pump controls," Applied Energy, Elsevier, vol. 238(C), pages 1417-1433.
    7. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    8. Schellenberg, C. & Lohan, J. & Dimache, L., 2020. "Comparison of metaheuristic optimisation methods for grid-edge technology that leverages heat pumps and thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    9. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    10. Jerez Monsalves, Juan & Bergaentzlé, Claire & Keles, Dogan, 2023. "Impacts of flexible-cooling and waste-heat recovery from data centres on energy systems: A Danish case study," Energy, Elsevier, vol. 281(C).
    11. Gronier, Timothé & Fitó, Jaume & Franquet, Erwin & Gibout, Stéphane & Ramousse, Julien, 2022. "Iterative sizing of solar-assisted mixed district heating network and local electrical grid integrating demand-side management," Energy, Elsevier, vol. 238(PA).
    12. Møller Sneum, Daniel, 2021. "Barriers to flexibility in the district energy-electricity system interface – A taxonomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
    14. Alessandro Franco & Carlo Bartoli & Paolo Conti & Daniele Testi, 2021. "Optimal Operation of Low-Capacity Heat Pump Systems for Residential Buildings through Thermal Energy Storage," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    15. Finck, Christian & Li, Rongling & Zeiler, Wim, 2019. "Economic model predictive control for demand flexibility of a residential building," Energy, Elsevier, vol. 176(C), pages 365-379.
    16. Clauß, John & Stinner, Sebastian & Sartori, Igor & Georges, Laurent, 2019. "Predictive rule-based control to activate the energy flexibility of Norwegian residential buildings: Case of an air-source heat pump and direct electric heating," Applied Energy, Elsevier, vol. 237(C), pages 500-518.
    17. Sneum, Daniel Møller & González, Mario Garzón & Gea-Bermúdez, Juan, 2021. "Increased heat-electricity sector coupling by constraining biomass use?," Energy, Elsevier, vol. 222(C).
    18. Marijanovic, Zorica & Theile, Philipp & Czock, Berit Hanna, 2022. "Value of short-term heating system flexibility – A case study for residential heat pumps on the German intraday market," Energy, Elsevier, vol. 249(C).
    19. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
    20. Terreros, O. & Spreitzhofer, J. & Basciotti, D. & Schmidt, R.R. & Esterl, T. & Pober, M. & Kerschbaumer, M. & Ziegler, M., 2020. "Electricity market options for heat pumps in rural district heating networks in Austria," Energy, Elsevier, vol. 196(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:9:y:2020:i:3:n:e370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.