IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v222y2021ics0360544221002358.html
   My bibliography  Save this article

Increased heat-electricity sector coupling by constraining biomass use?

Author

Listed:
  • Sneum, Daniel Møller
  • González, Mario Garzón
  • Gea-Bermúdez, Juan

Abstract

Flexible sector coupling of heat and electricity is a well-documented way of facilitating efficient and renewables-based energy systems. Heating is characterised by substitutable heat sources, where some facilitate flexibility and sector coupling, while others do not. Earlier studies indicate sector coupling hindrances from competing biomass-based heat sources. The scientific contribution of this study is an investigation of heat source substitution as a general route to sector coupling. We explore the impacts of constraining biomass use, applying the Danish heat sector as a case, to see impacts on indicators such as power-to-heat deployment. We do so by introducing taxes on biomass use, ban biomass boilers and entirely prohibit use of biomass. These constraints are modelled in the Balmorel model. The results show that system costs decrease along with biomass use. Power-to-heat use, CO2-emissions, tax- and electricity tariff revenue and end-user heat cost increase, in some cases substantially. It appears that a CO2 price signal is sufficient to obtain CO2-reductions, whereas other motivations, including increased electrification of the heating sector, may justify constraints on biomass use.

Suggested Citation

  • Sneum, Daniel Møller & González, Mario Garzón & Gea-Bermúdez, Juan, 2021. "Increased heat-electricity sector coupling by constraining biomass use?," Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:energy:v:222:y:2021:i:c:s0360544221002358
    DOI: 10.1016/j.energy.2021.119986
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221002358
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.119986?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wissner, Matthias, 2014. "Regulation of district-heating systems," Utilities Policy, Elsevier, vol. 31(C), pages 63-73.
    2. Hvelplund, Frede & Østergaard, Poul Alberg & Meyer, Niels I., 2017. "Incentives and barriers for wind power expansion and system integration in Denmark," Energy Policy, Elsevier, vol. 107(C), pages 573-584.
    3. Arpagaus, Cordin & Bless, Frédéric & Uhlmann, Michael & Schiffmann, Jürg & Bertsch, Stefan S., 2018. "High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials," Energy, Elsevier, vol. 152(C), pages 985-1010.
    4. Nuño, Edgar & Maule, Petr & Hahmann, Andrea & Cutululis, Nicolaos & Sørensen, Poul & Karagali, Ioanna, 2018. "Simulation of transcontinental wind and solar PV generation time series," Renewable Energy, Elsevier, vol. 118(C), pages 425-436.
    5. Møller Sneum, Daniel & Sandberg, Eli & Koduvere, Hardi & Olsen, Ole Jess & Blumberga, Dagnija, 2018. "Policy incentives for flexible district heating in the Baltic countries," Utilities Policy, Elsevier, vol. 51(C), pages 61-72.
    6. Möller, Bernd & Lund, Henrik, 2010. "Conversion of individual natural gas to district heating: Geographical studies of supply costs and consequences for the Danish energy system," Applied Energy, Elsevier, vol. 87(6), pages 1846-1857, June.
    7. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    8. Østergaard, Poul Alberg & Jantzen, Jan & Marczinkowski, Hannah Mareike & Kristensen, Michael, 2019. "Business and socioeconomic assessment of introducing heat pumps with heat storage in small-scale district heating systems," Renewable Energy, Elsevier, vol. 139(C), pages 904-914.
    9. Kirkerud, Jon Gustav & Bolkesjø, Torjus Folsland & Trømborg, Erik, 2017. "Power-to-heat as a flexibility measure for integration of renewable energy," Energy, Elsevier, vol. 128(C), pages 776-784.
    10. Lund, Rasmus & Mathiesen, Brian Vad, 2015. "Large combined heat and power plants in sustainable energy systems," Applied Energy, Elsevier, vol. 142(C), pages 389-395.
    11. Thellufsen, Jakob Zinck & Lund, Henrik, 2017. "Cross-border versus cross-sector interconnectivity in renewable energy systems," Energy, Elsevier, vol. 124(C), pages 492-501.
    12. Olsen, Ole Jess & Munksgaard, Jesper, 1998. "Cogeneration and taxation in a liberalized Nordic power market," Utilities Policy, Elsevier, vol. 7(1), pages 23-33, March.
    13. Johannes Röder & David Beier & Benedikt Meyer & Joris Nettelstroth & Torben Stührmann & Edwin Zondervan, 2020. "Design of Renewable and System-Beneficial District Heating Systems Using a Dynamic Emission Factor for Grid-Sourced Electricity," Energies, MDPI, vol. 13(3), pages 1-22, February.
    14. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 212, pages 1611-1626.
    15. Good, Nicholas & Ellis, Keith A. & Mancarella, Pierluigi, 2017. "Review and classification of barriers and enablers of demand response in the smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 57-72.
    16. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    17. Matti Koivisto & Kaushik Das & Feng Guo & Poul Sørensen & Edgar Nuño & Nicolaos Cutululis & Petr Maule, 2019. "Using time series simulation tools for assessing the effects of variable renewable energy generation on power and energy systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.
    18. Gea-Bermúdez, Juan & Pade, Lise-Lotte & Koivisto, Matti Juhani & Ravn, Hans, 2020. "Optimal generation and transmission development of the North Sea region: Impact of grid architecture and planning horizon," Energy, Elsevier, vol. 191(C).
    19. Gaigalis, Vygandas & Skema, Romualdas & Marcinauskas, Kazys & Korsakiene, Irena, 2016. "A review on Heat Pumps implementation in Lithuania in compliance with the National Energy Strategy and EU policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 841-858.
    20. Mortensen, Anders Winther & Mathiesen, Brian Vad & Hansen, Anders Bavnhøj & Pedersen, Sigurd Lauge & Grandal, Rune Duban & Wenzel, Henrik, 2020. "The role of electrification and hydrogen in breaking the biomass bottleneck of the renewable energy system – A study on the Danish energy system," Applied Energy, Elsevier, vol. 275(C).
    21. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
    22. Mathiesen, Brian Vad & Lund, Henrik & Connolly, David, 2012. "Limiting biomass consumption for heating in 100% renewable energy systems," Energy, Elsevier, vol. 48(1), pages 160-168.
    23. Kirkerud, Jon Gustav & Trømborg, Erik & Bolkesjø, Torjus Folsland, 2016. "Impacts of electricity grid tariffs on flexible use of electricity to heat generation," Energy, Elsevier, vol. 115(P3), pages 1679-1687.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Forero-Quintero, Jose-Fernando & Villafáfila-Robles, Roberto & Barja-Martinez, Sara & Munné-Collado, Ingrid & Olivella-Rosell, Pol & Montesinos-Miracle, Daniel, 2022. "Profitability analysis on demand-side flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Haugen, Mari & Blaisdell-Pijuan, Paris L. & Botterud, Audun & Levin, Todd & Zhou, Zhi & Belsnes, Michael & Korpås, Magnus & Somani, Abhishek, 2024. "Power market models for the clean energy transition: State of the art and future research needs," Applied Energy, Elsevier, vol. 357(C).
    3. Michaela Makešová & Michaela Valentová, 2021. "The Concept of Multiple Impacts of Renewable Energy Sources: A Critical Review," Energies, MDPI, vol. 14(11), pages 1-21, May.
    4. Sifnaios, Ioannis & Sneum, Daniel Møller & Jensen, Adam R. & Fan, Jianhua & Bramstoft, Rasmus, 2023. "The impact of large-scale thermal energy storage in the energy system," Applied Energy, Elsevier, vol. 349(C).
    5. Bergaentzle, Claire & Gunkel, Philipp Andreas, 2022. "Cross-sector flexibility, storage investment and the integration of renewables: Capturing the impacts of grid tariffs," Energy Policy, Elsevier, vol. 164(C).
    6. Kim, Ju-Hee & Kim, Hee-Hoon & Yoo, Seung-Hoon, 2022. "Social acceptance toward constructing a combined heat and power plant near people's dwellings in South Korea," Energy, Elsevier, vol. 244(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Møller Sneum, Daniel, 2021. "Barriers to flexibility in the district energy-electricity system interface – A taxonomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Djørup, Søren & Thellufsen, Jakob Zinck & Sorknæs, Peter, 2018. "The electricity market in a renewable energy system," Energy, Elsevier, vol. 162(C), pages 148-157.
    4. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    5. Møller Sneum, Daniel & Sandberg, Eli & Koduvere, Hardi & Olsen, Ole Jess & Blumberga, Dagnija, 2018. "Policy incentives for flexible district heating in the Baltic countries," Utilities Policy, Elsevier, vol. 51(C), pages 61-72.
    6. Schellenberg, C. & Lohan, J. & Dimache, L., 2020. "Comparison of metaheuristic optimisation methods for grid-edge technology that leverages heat pumps and thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    7. Gjorgievski, Vladimir Z. & Markovska, Natasa & Abazi, Alajdin & Duić, Neven, 2021. "The potential of power-to-heat demand response to improve the flexibility of the energy system: An empirical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Omais Abdur Rehman & Valeria Palomba & Andrea Frazzica & Luisa F. Cabeza, 2021. "Enabling Technologies for Sector Coupling: A Review on the Role of Heat Pumps and Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-30, December.
    9. Jimenez-Navarro, Juan-Pablo & Kavvadias, Konstantinos & Filippidou, Faidra & Pavičević, Matija & Quoilin, Sylvain, 2020. "Coupling the heating and power sectors: The role of centralised combined heat and power plants and district heat in a European decarbonised power system," Applied Energy, Elsevier, vol. 270(C).
    10. Sandberg, Eli & Kirkerud, Jon Gustav & Trømborg, Erik & Bolkesjø, Torjus Folsland, 2019. "Energy system impacts of grid tariff structures for flexible power-to-district heat," Energy, Elsevier, vol. 168(C), pages 772-781.
    11. Bergaentzlé, Claire & Jensen, Ida Græsted & Skytte, Klaus & Olsen, Ole Jess, 2019. "Electricity grid tariffs as a tool for flexible energy systems: A Danish case study," Energy Policy, Elsevier, vol. 126(C), pages 12-21.
    12. Els van der Roest & Theo Fens & Martin Bloemendal & Stijn Beernink & Jan Peter van der Hoek & Ad J. M. van Wijk, 2021. "The Impact of System Integration on System Costs of a Neighborhood Energy and Water System," Energies, MDPI, vol. 14(9), pages 1-33, May.
    13. Olsen, Karen Pardos & Zong, Yi & You, Shi & Bindner, Henrik & Koivisto, Matti & Gea-Bermúdez, Juan, 2020. "Multi-timescale data-driven method identifying flexibility requirements for scenarios with high penetration of renewables," Applied Energy, Elsevier, vol. 264(C).
    14. Bergaentzle, Claire & Gunkel, Philipp Andreas, 2022. "Cross-sector flexibility, storage investment and the integration of renewables: Capturing the impacts of grid tariffs," Energy Policy, Elsevier, vol. 164(C).
    15. Bellocchi, Sara & Manno, Michele & Noussan, Michel & Prina, Matteo Giacomo & Vellini, Michela, 2020. "Electrification of transport and residential heating sectors in support of renewable penetration: Scenarios for the Italian energy system," Energy, Elsevier, vol. 196(C).
    16. Østergaard, Poul Alberg & Andersen, Anders N., 2016. "Booster heat pumps and central heat pumps in district heating," Applied Energy, Elsevier, vol. 184(C), pages 1374-1388.
    17. Peter D. Lund & Klaus Skytte & Simon Bolwig & Torjus Folsland Bolkesjö & Claire Bergaentzlé & Philipp Andreas Gunkel & Jon Gustav Kirkerud & Antje Klitkou & Hardi Koduvere & Armands Gravelsins & Dagni, 2019. "Pathway Analysis of a Zero-Emission Transition in the Nordic-Baltic Region," Energies, MDPI, vol. 12(17), pages 1-20, August.
    18. Swisher, Philip & Murcia Leon, Juan Pablo & Gea-Bermúdez, Juan & Koivisto, Matti & Madsen, Helge Aagaard & Münster, Marie, 2022. "Competitiveness of a low specific power, low cut-out wind speed wind turbine in North and Central Europe towards 2050," Applied Energy, Elsevier, vol. 306(PB).
    19. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
    20. Marczinkowski, Hannah Mareike & Østergaard, Poul Alberg, 2019. "Evaluation of electricity storage versus thermal storage as part of two different energy planning approaches for the islands Samsø and Orkney," Energy, Elsevier, vol. 175(C), pages 505-514.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:222:y:2021:i:c:s0360544221002358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.