Electricity, gas, heat integration via residential hybrid heating technologies – An investment model assessment
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2016.04.126
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
- Kiviluoma, Juha & Meibom, Peter, 2010. "Influence of wind power, plug-in electric vehicles, and heat storages on power system investments," Energy, Elsevier, vol. 35(3), pages 1244-1255.
- Capuder, Tomislav & Mancarella, Pierluigi, 2014. "Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options," Energy, Elsevier, vol. 71(C), pages 516-533.
- Hedegaard, Karsten & Balyk, Olexandr, 2013. "Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks," Energy, Elsevier, vol. 63(C), pages 356-365.
- Rinne, S. & Syri, S., 2015. "The possibilities of combined heat and power production balancing large amounts of wind power in Finland," Energy, Elsevier, vol. 82(C), pages 1034-1046.
- Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Borge-Diez, David & Mur-Pérez, Francisco, 2015. "Cogeneration and district heating networks: Measures to remove institutional and financial barriers that restrict their joint use in the EU-28," Energy, Elsevier, vol. 85(C), pages 403-414.
- Hedegaard, Karsten & Mathiesen, Brian Vad & Lund, Henrik & Heiselberg, Per, 2012. "Wind power integration using individual heat pumps – Analysis of different heat storage options," Energy, Elsevier, vol. 47(1), pages 284-293.
- Vuillecard, Cyril & Hubert, Charles Emile & Contreau, Régis & mazzenga, Anthony & Stabat, Pascal & Adnot, Jerome, 2011. "Small scale impact of gas technologies on electric load management – μCHP & hybrid heat pump," Energy, Elsevier, vol. 36(5), pages 2912-2923.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Heinen, Steve & Turner, William & Cradden, Lucy & McDermott, Frank & O'Malley, Mark, 2017. "Electrification of residential space heating considering coincidental weather events and building thermal inertia: A system-wide planning analysis," Energy, Elsevier, vol. 127(C), pages 136-154.
- Katz, Jonas & Andersen, Frits Møller & Morthorst, Poul Erik, 2016. "Load-shift incentives for household demand response: Evaluation of hourly dynamic pricing and rebate schemes in a wind-based electricity system," Energy, Elsevier, vol. 115(P3), pages 1602-1616.
- Haas, J. & Cebulla, F. & Cao, K. & Nowak, W. & Palma-Behnke, R. & Rahmann, C. & Mancarella, P., 2017. "Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 603-619.
- Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018.
"Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials,"
EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 212, pages 1611-1626.
- Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
- Andreas Bloess & Wolf-Peter Schill & Alexander Zerrahn, 2017. "Power-to-Heat for Renewable Energy Integration: Technologies, Modeling Approaches, and Flexibility Potentials," Discussion Papers of DIW Berlin 1677, DIW Berlin, German Institute for Economic Research.
- Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Kavvadias, K.C., 2016. "Energy price spread as a driving force for combined generation investments: A view on Europe," Energy, Elsevier, vol. 115(P3), pages 1632-1639.
- Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.
- Matija Kostelac & Lin Herenčić & Tomislav Capuder, 2022. "Planning and Operational Aspects of Individual and Clustered Multi-Energy Microgrid Options," Energies, MDPI, vol. 15(4), pages 1-17, February.
- Pina, Eduardo A. & Lozano, Miguel A. & Serra, Luis M., 2018. "Thermoeconomic cost allocation in simple trigeneration systems including thermal energy storage," Energy, Elsevier, vol. 153(C), pages 170-184.
- Felten, Björn & Weber, Christoph, 2018. "The value(s) of flexible heat pumps – Assessment of technical and economic conditions," Applied Energy, Elsevier, vol. 228(C), pages 1292-1319.
- Wang, Jinda & Zhou, Zhigang & Zhao, Jianing & Zheng, Jinfu, 2018. "Improving wind power integration by a novel short-term dispatch model based on free heat storage and exhaust heat recycling," Energy, Elsevier, vol. 160(C), pages 940-953.
- Schill, Wolf-Peter & Zerrahn, Alexander, 2020.
"Flexible electricity use for heating in markets with renewable energy,"
EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 266.
- Schill, Wolf-Peter & Zerrahn, Alexander, 2020. "Flexible electricity use for heating in markets with renewable energy," Applied Energy, Elsevier, vol. 266(C).
- Wolf-Peter Schill & Alexander Zerrahn, 2018. "Flexible Electricity Use for Heating in Markets with Renewable Energy," Discussion Papers of DIW Berlin 1769, DIW Berlin, German Institute for Economic Research.
- Rigo-Mariani, Rémy & Chea Wae, Sean Ooi & Mazzoni, Stefano & Romagnoli, Alessandro, 2020. "Comparison of optimization frameworks for the design of a multi-energy microgrid," Applied Energy, Elsevier, vol. 257(C).
- Moghaddam, Iman Gerami & Saniei, Mohsen & Mashhour, Elaheh, 2016. "A comprehensive model for self-scheduling an energy hub to supply cooling, heating and electrical demands of a building," Energy, Elsevier, vol. 94(C), pages 157-170.
- Lizana, Jesus & Halloran, Claire E. & Wheeler, Scot & Amghar, Nabil & Renaldi, Renaldi & Killendahl, Markus & Perez-Maqueda, Luis A. & McCulloch, Malcolm & Chacartegui, Ricardo, 2023. "A national data-based energy modelling to identify optimal heat storage capacity to support heating electrification," Energy, Elsevier, vol. 262(PA).
- Scheller, Fabian & Burgenmeister, Balthasar & Kondziella, Hendrik & Kühne, Stefan & Reichelt, David G. & Bruckner, Thomas, 2018. "Towards integrated multi-modal municipal energy systems: An actor-oriented optimization approach," Applied Energy, Elsevier, vol. 228(C), pages 2009-2023.
- Marijanovic, Zorica & Theile, Philipp & Czock, Berit Hanna, 2022. "Value of short-term heating system flexibility – A case study for residential heat pumps on the German intraday market," Energy, Elsevier, vol. 249(C).
- Lythcke-Jørgensen, Christoffer & Ensinas, Adriano Viana & Münster, Marie & Haglind, Fredrik, 2016. "A methodology for designing flexible multi-generation systems," Energy, Elsevier, vol. 110(C), pages 34-54.
- Patteeuw, Dieter & Bruninx, Kenneth & Arteconi, Alessia & Delarue, Erik & D’haeseleer, William & Helsen, Lieve, 2015. "Integrated modeling of active demand response with electric heating systems coupled to thermal energy storage systems," Applied Energy, Elsevier, vol. 151(C), pages 306-319.
- Child, Michael & Breyer, Christian, 2016. "Vision and initial feasibility analysis of a recarbonised Finnish energy system for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 517-536.
More about this item
Keywords
Energy systems integration; Power system planning; Residential heat technologies; Multi-energy devices; Demand side management; Flexible electricity demand;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:109:y:2016:i:c:p:906-919. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.