IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v165y2018icp56-72.html
   My bibliography  Save this article

Joint asymptotics for estimating the fractal indices of bivariate Gaussian processes

Author

Listed:
  • Zhou, Yuzhen
  • Xiao, Yimin

Abstract

Multivariate (or vector-valued) processes are important for modeling multiple variables. The fractal indices of the components of the underlying multivariate process play a key role in characterizing the dependence structures and statistical properties of the multivariate process. In this paper, under the infill asymptotics framework, we establish joint asymptotic results for the increment-based estimators of bivariate fractal indices. Our main results quantitatively describe the effect of the cross-dependence structure on the performance of the estimators.

Suggested Citation

  • Zhou, Yuzhen & Xiao, Yimin, 2018. "Joint asymptotics for estimating the fractal indices of bivariate Gaussian processes," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 56-72.
  • Handle: RePEc:eee:jmvana:v:165:y:2018:i:c:p:56-72
    DOI: 10.1016/j.jmva.2017.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X17307509
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2017.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gneiting, Tilmann & Kleiber, William & Schlather, Martin, 2010. "Matérn Cross-Covariance Functions for Multivariate Random Fields," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1167-1177.
    2. Tatiyana V. Apanasovich & Marc G. Genton & Ying Sun, 2012. "A Valid Matérn Class of Cross-Covariance Functions for Multivariate Random Fields With Any Number of Components," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 180-193, March.
    3. Kaufman, Cari G. & Schervish, Mark J. & Nychka, Douglas W., 2008. "Covariance Tapering for Likelihood-Based Estimation in Large Spatial Data Sets," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1545-1555.
    4. Zhang, Hao, 2004. "Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 250-261, January.
    5. Lim, Chae Young & Stein, Michael, 2008. "Properties of spatial cross-periodograms using fixed-domain asymptotics," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1962-1984, October.
    6. Furrer, Reinhard & Bachoc, François & Du, Juan, 2016. "Asymptotic properties of multivariate tapering for estimation and prediction," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 177-191.
    7. Kleiber, William & Nychka, Douglas, 2012. "Nonstationary modeling for multivariate spatial processes," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 76-91.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Szarek, Dawid & Maraj-Zygmąt, Katarzyna & Sikora, Grzegorz & Krapf, Diego & Wyłomańska, Agnieszka, 2022. "Statistical test for anomalous diffusion based on empirical anomaly measure for Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    2. Hong, Yiping & Zhou, Zaiying & Yang, Ying, 2020. "Hypothesis testing for the smoothness parameter of Matérn covariance model on a regular grid," Journal of Multivariate Analysis, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moreno Bevilacqua & Alfredo Alegria & Daira Velandia & Emilio Porcu, 2016. "Composite Likelihood Inference for Multivariate Gaussian Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 448-469, September.
    2. May, Paul & Biesecker, Matthew & Rekabdarkolaee, Hossein Moradi, 2022. "Response envelopes for linear coregionalization models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    3. Ip, Ryan H.L. & Li, W.K., 2017. "A class of valid Matérn cross-covariance functions for multivariate spatio-temporal random fields," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 115-119.
    4. Wu, Wei-Ying & Lim, Chae Young & Xiao, Yimin, 2013. "Tail estimation of the spectral density for a stationary Gaussian random field," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 74-91.
    5. Bevilacqua, Moreno & Caamaño-Carrillo, Christian & Porcu, Emilio, 2022. "Unifying compactly supported and Matérn covariance functions in spatial statistics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    6. Jun, Mikyoung, 2014. "Matérn-based nonstationary cross-covariance models for global processes," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 134-146.
    7. M. Bevilacqua & A. Fassò & C. Gaetan & E. Porcu & D. Velandia, 2016. "Covariance tapering for multivariate Gaussian random fields estimation," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 21-37, March.
    8. Moreno Bevilacqua & Ronny Vallejos & Daira Velandia, 2015. "Assessing the significance of the correlation between the components of a bivariate Gaussian random field," Environmetrics, John Wiley & Sons, Ltd., vol. 26(8), pages 545-556, December.
    9. Guinness, Joseph, 2022. "Nonparametric spectral methods for multivariate spatial and spatial–temporal data," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    10. Monterrubio-Gómez, Karla & Roininen, Lassi & Wade, Sara & Damoulas, Theodoros & Girolami, Mark, 2020. "Posterior inference for sparse hierarchical non-stationary models," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
    11. Emilio Porcu & Moreno Bevilacqua & Marc G. Genton, 2016. "Spatio-Temporal Covariance and Cross-Covariance Functions of the Great Circle Distance on a Sphere," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 888-898, April.
    12. Matthew J. Heaton & Abhirup Datta & Andrew O. Finley & Reinhard Furrer & Joseph Guinness & Rajarshi Guhaniyogi & Florian Gerber & Robert B. Gramacy & Dorit Hammerling & Matthias Katzfuss & Finn Lindgr, 2019. "A Case Study Competition Among Methods for Analyzing Large Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 398-425, September.
    13. Bachoc, François & Lagnoux, Agnès & Nguyen, Thi Mong Ngoc, 2017. "Cross-validation estimation of covariance parameters under fixed-domain asymptotics," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 42-67.
    14. Philip A. White & Durban G. Keeler & Daniel Sheanshang & Summer Rupper, 2022. "Improving piecewise linear snow density models through hierarchical spatial and orthogonal functional smoothing," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    15. Moreva, Olga & Schlather, Martin, 2023. "Bivariate covariance functions of Pólya type," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    16. Keshavarz, Hossein & Scott, Clayton & Nguyen, XuanLong, 2016. "On the consistency of inversion-free parameter estimation for Gaussian random fields," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 245-266.
    17. Lim, Chae Young & Wu, Wei-Ying, 2022. "Conditions on which cokriging does not do better than kriging," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    18. Isabelle Grenier & Bruno Sansó & Jessica L. Matthews, 2024. "Multivariate nearest‐neighbors Gaussian processes with random covariance matrices," Environmetrics, John Wiley & Sons, Ltd., vol. 35(3), May.
    19. Hong, Yiping & Zhou, Zaiying & Yang, Ying, 2020. "Hypothesis testing for the smoothness parameter of Matérn covariance model on a regular grid," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    20. Ghulam A. Qadir & Carolina Euán & Ying Sun, 2021. "Flexible Modeling of Variable Asymmetries in Cross-Covariance Functions for Multivariate Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(1), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:165:y:2018:i:c:p:56-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.