IDEAS home Printed from https://ideas.repec.org/a/bla/revpol/v38y2021i6p640-660.html
   My bibliography  Save this article

Holding out the promise of Lasswell's dream: Big data analytics in public policy research and teaching

Author

Listed:
  • Ola G. El‐Taliawi
  • Nihit Goyal
  • Michael Howlett

Abstract

While the emergence of big data raises concerns regarding governance and public policy, it also creates opportunities for diversifying the toolkit for analysis for the policy sciences as a whole, i.e., research concerning policy analysis as well as policy studies. Further, it opens avenues for practice, which together with research requires adaptation in teaching curricula if policy education were to remain relevant. However, it is not clear to what extent this opportunity is being realized in public policy research and teaching. In this study, we examine the prevalence of big data analytics in public policy research and pedagogy using bibliometric analysis and topic modeling for the former, and content analysis of course titles and descriptions for the latter. We find that despite significant scope for application of various big data techniques, the use of these analytic techniques in public policy has been largely limited to select institutions in a few countries. Further, data science has received limited attention in policy pedagogy, once again with significant geographic variation in its prevalence. We conclude that, to stay relevant, the policy sciences need to pay more attention to the integration of big data techniques in policy research, pedagogy, and thereby practice. 尽管大数据的出现引起了治理和公共政策方面的关切,但其也创造了机遇,对用于整个政策科学(即结合政策分析和政策研究)分析的工具盒加以多样化。此举还为实践提供了方法,如果政策教育还能保持其相关性,实践和研究的结合则要求教学课程与其相适应。不过,尚不清晰的是,公共政策研究和教学中这样的机遇能在多大程度上得以实现。本文中,我们分析了大数据分析学在公共政策研究(前者)及教学(后者)中的流行程度,前者使用文献计量分析和主题建模,后者对课程名称及描述使用内容分析。我们发现,尽管不同大数据技术的应用范围很广,但这些分析技术在公共政策中的使用却在很大程度上仅出现在部分国家的精英机构中。此外,数据科学在政策教学法中受到的关注有限,其流行程度在不同地点存在显著差异。我们的结论认为,为保持相关性,政策科学需更加关注大数据技术在政策研究、教学以及实践中的融入。 Si bien el surgimiento de macrodatos genera preocupaciones con respecto a la gobernanza y las políticas públicas, también crea oportunidades para diversificar el conjunto de herramientas para el análisis de las ciencias de las políticas en su conjunto, es decir, la investigación sobre el análisis de políticas y los estudios de políticas. Además, abre vías para la práctica que, junto con la investigación, requiere una adaptación en los planes de estudio de la enseñanza para que la educación en políticas siga siendo relevante. Sin embargo, no está claro hasta qué punto se está aprovechando esta oportunidad en la investigación y la enseñanza de políticas públicas. En este estudio, examinamos la prevalencia del análisis de big data en la investigación y la pedagogía de políticas públicas utilizando el análisis bibliométrico y el modelado de temas para el primero, y el análisis de contenido de los títulos y descripciones de los cursos para el segundo. Descubrimos que, a pesar del amplio margen para la aplicación de varias técnicas de big data, el uso de estas técnicas analíticas en las políticas públicas se ha limitado en gran medida a instituciones seleccionadas en unos pocos países. Además, la ciencia de datos ha recibido una atención limitada en la pedagogía de políticas, una vez más con una variación geográfica significativa en su prevalencia. Concluimos que, para seguir siendo relevantes, las ciencias de la política deben prestar más atención a la integración de técnicas de big data en la investigación de políticas, la pedagogía y, por lo tanto, la práctica.

Suggested Citation

  • Ola G. El‐Taliawi & Nihit Goyal & Michael Howlett, 2021. "Holding out the promise of Lasswell's dream: Big data analytics in public policy research and teaching," Review of Policy Research, Policy Studies Organization, vol. 38(6), pages 640-660, November.
  • Handle: RePEc:bla:revpol:v:38:y:2021:i:6:p:640-660
    DOI: 10.1111/ropr.12448
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/ropr.12448
    Download Restriction: no

    File URL: https://libkey.io/10.1111/ropr.12448?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paul Cairney, 2012. "Complexity Theory in Political Science and Public Policy," Political Studies Review, Political Studies Association, vol. 10(3), pages 346-358, September.
    2. Ola G. El-Taliawi & Sreeja Nair & Zeger Wal, 2021. "Public policy schools in the global south: a mapping and analysis of the emerging landscape," Policy Sciences, Springer;Society of Policy Sciences, vol. 54(2), pages 371-395, June.
    3. Lucy Barnes & Timothy Hicks, 2018. "Making Austerity Popular: The Media and Mass Attitudes toward Fiscal Policy," American Journal of Political Science, John Wiley & Sons, vol. 62(2), pages 340-354, April.
    4. Greene, Derek & Cross, James P., 2017. "Exploring the Political Agenda of the European Parliament Using a Dynamic Topic Modeling Approach," Political Analysis, Cambridge University Press, vol. 25(1), pages 77-94, January.
    5. Padmini Srinivasan, 2004. "Text mining: Generating hypotheses from MEDLINE," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 55(5), pages 396-413, March.
    6. Ying, Cheng-shuo & Chow, Andy H.F. & Chin, Kwai-Sang, 2020. "An actor-critic deep reinforcement learning approach for metro train scheduling with rolling stock circulation under stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 210-235.
    7. Samuel Donovan, 2008. "Big data: teaching must evolve to keep up with advances," Nature, Nature, vol. 455(7212), pages 461-461, September.
    8. Xiaozan Lyu & Rodrigo Costas, 2020. "How do academic topics shift across altmetric sources? A case study of the research area of Big Data," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 909-943, May.
    9. Jon Kleinberg & Himabindu Lakkaraju & Jure Leskovec & Jens Ludwig & Sendhil Mullainathan, 2018. "Human Decisions and Machine Predictions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(1), pages 237-293.
    10. Amah Akodéwou & Johan Oszwald & Slim Saïdi & Laurent Gazull & Sêmihinva Akpavi & Koffi Akpagana & Valéry Gond, 2020. "Land Use and Land Cover Dynamics Analysis of the Togodo Protected Area and Its Surroundings in Southeastern Togo, West Africa," Sustainability, MDPI, vol. 12(13), pages 1-23, July.
    11. Muhammad Shahzad Nazir & Fahad Alturise & Sami Alshmrany & Hafiz. M. J Nazir & Muhammad Bilal & Ahmad N. Abdalla & P. Sanjeevikumar & Ziad M. Ali, 2020. "Wind Generation Forecasting Methods and Proliferation of Artificial Neural Network: A Review of Five Years Research Trend," Sustainability, MDPI, vol. 12(9), pages 1-27, May.
    12. Shradha A. Gawankar & Angappa Gunasekaran & Sachin Kamble, 2020. "A study on investments in the big data-driven supply chain, performance measures and organisational performance in Indian retail 4.0 context," International Journal of Production Research, Taylor & Francis Journals, vol. 58(5), pages 1574-1593, March.
    13. E. Talamini & H. Dewes, 2012. "The macro-environment for liquid Biofuels in Brazilian science and public policies," Science and Public Policy, Oxford University Press, vol. 39(1), pages 13-29, January.
    14. Oded Netzer & Ronen Feldman & Jacob Goldenberg & Moshe Fresko, 2012. "Mine Your Own Business: Market-Structure Surveillance Through Text Mining," Marketing Science, INFORMS, vol. 31(3), pages 521-543, May.
    15. Margaret Roberts & Brandon Stewart & Tingley, Dustin, 2014. "stm: R Package for Structural Topic Models," Working Paper 176291, Harvard University OpenScholar.
    16. Se-Hoon Jung & Jun-Ho Huh, 2019. "A Novel on Transmission Line Tower Big Data Analysis Model Using Altered K-means and ADQL," Sustainability, MDPI, vol. 11(13), pages 1-25, June.
    17. Darshana Athukorala & Yuji Murayama, 2020. "Spatial Variation of Land Use/Cover Composition and Impact on Surface Urban Heat Island in a Tropical Sub-Saharan City of Accra, Ghana," Sustainability, MDPI, vol. 12(19), pages 1-20, September.
    18. Moyano, Amparo & Moya-Gómez, Borja & Gutiérrez, Javier, 2018. "Access and egress times to high-speed rail stations: a spatiotemporal accessibility analysis," Journal of Transport Geography, Elsevier, vol. 73(C), pages 84-93.
    19. Da HUO & Ken HUNG, 2015. "Internationalization Strategy and Firm Performance: Estimation of Corporate Strategy Effect Based on Big Data of Chinese IT Companies in a Complex Network," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 148-163, June.
    20. Haoran Zhao & Sen Guo & Huiru Zhao, 2017. "Energy-Related CO 2 Emissions Forecasting Using an Improved LSSVM Model Optimized by Whale Optimization Algorithm," Energies, MDPI, vol. 10(7), pages 1-15, June.
    21. Kwakkel, J.H. & Cunningham, S.C., 2016. "Improving scenario discovery by bagging random boxes," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 124-134.
    22. Manjula Ranagalage & Yuji Murayama & DMSLB Dissanayake & Matamyo Simwanda, 2019. "The Impacts of Landscape Changes on Annual Mean Land Surface Temperature in the Tropical Mountain City of Sri Lanka: A Case Study of Nuwara Eliya (1996–2017)," Sustainability, MDPI, vol. 11(19), pages 1-26, October.
    23. Shaofu Du & Wenzhi Tang & Jiajia Zhao & Tengfei Nie, 2018. "Sell to whom? Firm’s green production in competition facing market segmentation," Annals of Operations Research, Springer, vol. 270(1), pages 125-154, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nils C. Bandelow & Johanna Hornung & Ilana Schröder & Colette S. Vogeler, 2021. "The transformative power of technological change for public policy," Review of Policy Research, Policy Studies Organization, vol. 38(6), pages 638-639, November.
    2. Md Altab Hossin & Jie Du & Lei Mu & Isaac Owusu Asante, 2023. "Big Data-Driven Public Policy Decisions: Transformation Toward Smart Governance," SAGE Open, , vol. 13(4), pages 21582440231, December.
    3. Maria Stella Righettini & Elisa Bordin, 2023. "Exploring food security as a multidimensional topic: twenty years of scientific publications and recent developments," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(3), pages 2739-2758, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Toschi & Elisa Ughetto & Andrea Fronzetti Colladon, 2023. "The identity of social impact venture capitalists: exploring social linguistic positioning and linguistic distinctiveness through text mining," Small Business Economics, Springer, vol. 60(3), pages 1249-1280, March.
    2. Jorge Mejia & Shawn Mankad & Anandasivam Gopal, 2019. "A for Effort? Using the Crowd to Identify Moral Hazard in New York City Restaurant Hygiene Inspections," Information Systems Research, INFORMS, vol. 30(4), pages 1363-1386, December.
    3. Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
    4. Dean Neu & Gregory D. Saxton & Abu S. Rahaman, 2022. "Social Accountability, Ethics, and the Occupy Wall Street Protests," Journal of Business Ethics, Springer, vol. 180(1), pages 17-31, September.
    5. Gal-Tzur, Ayelet & Grant-Muller, Susan M. & Kuflik, Tsvi & Minkov, Einat & Nocera, Silvio & Shoor, Itay, 2014. "The potential of social media in delivering transport policy goals," Transport Policy, Elsevier, vol. 32(C), pages 115-123.
    6. Federico Maria Ferrara & Jörg S Haas & Andrew Peterson & Thomas Sattler, 2022. "Exports vs. Investment: How Public Discourse Shapes Support for External Imbalances," Post-Print hal-02569351, HAL.
    7. Yu Ding & Wayne S. DeSarbo & Dominique M. Hanssens & Kamel Jedidi & John G. Lynch & Donald R. Lehmann, 2020. "The past, present, and future of measurement and methods in marketing analysis," Marketing Letters, Springer, vol. 31(2), pages 175-186, September.
    8. Dionissi Aliprantis & Hal Martin & Kristen Tauber, 2020. "What Determines the Success of Housing Mobility Programs?," Working Papers 20-36R, Federal Reserve Bank of Cleveland, revised 19 Oct 2022.
    9. Głodowska Agnieszka & Pera Bożena & Wach Krzysztof, 2019. "International Strategy as the Facilitator of the Speed, Scope, and Scale of Firms’ Internationalization," Journal of Management and Business Administration. Central Europe, Sciendo, vol. 27(3), pages 55-84, September.
    10. Papanagnou, Christos & Seiler, Andreas & Spanaki, Konstantina & Papadopoulos, Thanos & Bourlakis, Michael, 2022. "Data-driven digital transformation for emergency situations: The case of the UK retail sector," International Journal of Production Economics, Elsevier, vol. 250(C).
    11. Andreea Orîndaru & Mihaela Constantinescu & Claudia-Elena Țuclea & Ștefan-Claudiu Căescu & Margareta Stela Florescu & Ionel Dumitru, 2020. "Rurbanization—Making the City Greener: Young Citizen Implication and Future Actions," Sustainability, MDPI, vol. 12(17), pages 1-20, September.
    12. Daniel M. Ringel & Bernd Skiera, 2016. "Visualizing Asymmetric Competition Among More Than 1,000 Products Using Big Search Data," Marketing Science, INFORMS, vol. 35(3), pages 511-534, May.
    13. Daníelsson, Jón & Macrae, Robert & Uthemann, Andreas, 2022. "Artificial intelligence and systemic risk," Journal of Banking & Finance, Elsevier, vol. 140(C).
    14. Xiaofang Sun & Chao Yu & Junbang Wang & Meng Wang, 2020. "The Intensity Analysis of Production Living Ecological Land in Shandong Province, China," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    15. Yucheng Yang & Zhong Zheng & Weinan E, 2020. "Interpretable Neural Networks for Panel Data Analysis in Economics," Papers 2010.05311, arXiv.org, revised Nov 2020.
    16. Daniel Carter & Amelia Acker & Dan Sholler, 2021. "Investigative approaches to researching information technology companies," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(6), pages 655-666, June.
    17. Maschke, Andreas, 2024. "Talking exports: The representation of Germany's current account in newspaper media," MPIfG Discussion Paper 24/1, Max Planck Institute for the Study of Societies.
    18. Zhao, Shuping & Xu, Kai & Wang, Zhao & Liang, Changyong & Lu, Wenxing & Chen, Bo, 2022. "Financial distress prediction by combining sentiment tone features," Economic Modelling, Elsevier, vol. 106(C).
    19. Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023. "Towards data-driven project design: Providing optimal treatment rules for development projects," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    20. Karen Ruckman & Nilesh Saraf & Vallabh Sambamurthy, 2015. "Market Positioning by IT Service Vendors Through Imitation," Information Systems Research, INFORMS, vol. 26(1), pages 100-126, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:revpol:v:38:y:2021:i:6:p:640-660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/ipsonea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.