IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i13p3499-d242985.html
   My bibliography  Save this article

A Novel on Transmission Line Tower Big Data Analysis Model Using Altered K-means and ADQL

Author

Listed:
  • Se-Hoon Jung

    (School of Connection Major (Bigdata Convergence), Youngsan University of Yangsan, Yangsan 50501, Korea)

  • Jun-Ho Huh

    (Department of Software, Catholic University of Pusan, Busan 46252, Korea)

Abstract

This study sought to propose a big data analysis and prediction model for transmission line tower outliers to assess when something is wrong with transmission line tower big data based on deep reinforcement learning. The model enables choosing automatic cluster K values based on non-labeled sensor big data. It also allows measuring the distance of action between data inside a cluster with the Q-value representing network output in the altered transmission line tower big data clustering algorithm containing transmission line tower outliers and old Deep Q Network. Specifically, this study performed principal component analysis to categorize transmission line tower data and proposed an automatic initial central point approach through standard normal distribution. It also proposed the A-Deep Q-Learning algorithm altered from the deep Q-Learning algorithm to explore policies based on the experiences of clustered data learning. It can be used to perform transmission line tower outlier data learning based on the distance of data within a cluster. The performance evaluation results show that the proposed model recorded an approximately 2.29%~4.19% higher prediction rate and around 0.8% ~ 4.3% higher accuracy rate compared to the old transmission line tower big data analysis model.

Suggested Citation

  • Se-Hoon Jung & Jun-Ho Huh, 2019. "A Novel on Transmission Line Tower Big Data Analysis Model Using Altered K-means and ADQL," Sustainability, MDPI, vol. 11(13), pages 1-25, June.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3499-:d:242985
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/13/3499/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/13/3499/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Kaile & Fu, Chao & Yang, Shanlin, 2016. "Big data driven smart energy management: From big data to big insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 215-225.
    2. David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
    3. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrycjusz Zarębski & Dominika Zwęglińska-Gałecka, 2020. "Mapping the Food Festivals and Sustainable Capitals: Evidence from Poland," Sustainability, MDPI, vol. 12(24), pages 1-23, December.
    2. Ola G. El‐Taliawi & Nihit Goyal & Michael Howlett, 2021. "Holding out the promise of Lasswell's dream: Big data analytics in public policy research and teaching," Review of Policy Research, Policy Studies Organization, vol. 38(6), pages 640-660, November.
    3. Jianfeng Yao & Guohui Shen & Zhibin Tu & Yong Chen & Wenjuan Lou, 2022. "Wind Tunnel Tests of an Aeroelastic Model of a Long-Span Transmission Tower," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    4. Isaac Machorro-Cano & Giner Alor-Hernández & Mario Andrés Paredes-Valverde & Lisbeth Rodríguez-Mazahua & José Luis Sánchez-Cervantes & José Oscar Olmedo-Aguirre, 2020. "HEMS-IoT: A Big Data and Machine Learning-Based Smart Home System for Energy Saving," Energies, MDPI, vol. 13(5), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    2. Boute, Robert N. & Gijsbrechts, Joren & van Jaarsveld, Willem & Vanvuchelen, Nathalie, 2022. "Deep reinforcement learning for inventory control: A roadmap," European Journal of Operational Research, Elsevier, vol. 298(2), pages 401-412.
    3. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    4. Yang, Kaiyuan & Huang, Houjing & Vandans, Olafs & Murali, Adithya & Tian, Fujia & Yap, Roland H.C. & Dai, Liang, 2023. "Applying deep reinforcement learning to the HP model for protein structure prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    5. Weifan Long & Taixian Hou & Xiaoyi Wei & Shichao Yan & Peng Zhai & Lihua Zhang, 2023. "A Survey on Population-Based Deep Reinforcement Learning," Mathematics, MDPI, vol. 11(10), pages 1-17, May.
    6. Yifeng Guo & Xingyu Fu & Yuyan Shi & Mingwen Liu, 2018. "Robust Log-Optimal Strategy with Reinforcement Learning," Papers 1805.00205, arXiv.org.
    7. Touzani, Samir & Prakash, Anand Krishnan & Wang, Zhe & Agarwal, Shreya & Pritoni, Marco & Kiran, Mariam & Brown, Richard & Granderson, Jessica, 2021. "Controlling distributed energy resources via deep reinforcement learning for load flexibility and energy efficiency," Applied Energy, Elsevier, vol. 304(C).
    8. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    9. O’Malley, Cormac & de Mars, Patrick & Badesa, Luis & Strbac, Goran, 2023. "Reinforcement learning and mixed-integer programming for power plant scheduling in low carbon systems: Comparison and hybridisation," Applied Energy, Elsevier, vol. 349(C).
    10. Yuchao Dong, 2022. "Randomized Optimal Stopping Problem in Continuous time and Reinforcement Learning Algorithm," Papers 2208.02409, arXiv.org, revised Sep 2023.
    11. Shijun Wang & Baocheng Zhu & Chen Li & Mingzhe Wu & James Zhang & Wei Chu & Yuan Qi, 2020. "Riemannian Proximal Policy Optimization," Computer and Information Science, Canadian Center of Science and Education, vol. 13(3), pages 1-93, August.
    12. Xuan-Kun Li & Jian-Xu Ma & Xiang-Yu Li & Jun-Jie Hu & Chuan-Yang Ding & Feng-Kai Han & Xiao-Min Guo & Xi Tan & Xian-Min Jin, 2024. "High-efficiency reinforcement learning with hybrid architecture photonic integrated circuit," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Iwao Maeda & David deGraw & Michiharu Kitano & Hiroyasu Matsushima & Hiroki Sakaji & Kiyoshi Izumi & Atsuo Kato, 2020. "Deep Reinforcement Learning in Agent Based Financial Market Simulation," JRFM, MDPI, vol. 13(4), pages 1-17, April.
    14. Shohei Ohsawa, 2021. "Truthful Self-Play," Papers 2106.03007, arXiv.org, revised Feb 2023.
    15. Li, Wenqing & Ni, Shaoquan, 2022. "Train timetabling with the general learning environment and multi-agent deep reinforcement learning," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 230-251.
    16. Ayman Chaouki & Stephen Hardiman & Christian Schmidt & Emmanuel S'eri'e & Joachim de Lataillade, 2020. "Deep Deterministic Portfolio Optimization," Papers 2003.06497, arXiv.org, revised Apr 2020.
    17. Gang Hu & Ming Gu, 2024. "Markowitz Meets Bellman: Knowledge-distilled Reinforcement Learning for Portfolio Management," Papers 2405.05449, arXiv.org.
    18. Bálint Kővári & Lászlo Szőke & Tamás Bécsi & Szilárd Aradi & Péter Gáspár, 2021. "Traffic Signal Control via Reinforcement Learning for Reducing Global Vehicle Emission," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    19. Bo Hu & Jiaxi Li & Shuang Li & Jie Yang, 2019. "A Hybrid End-to-End Control Strategy Combining Dueling Deep Q-network and PID for Transient Boost Control of a Diesel Engine with Variable Geometry Turbocharger and Cooled EGR," Energies, MDPI, vol. 12(19), pages 1-15, September.
    20. Elsisi, Mahmoud & Amer, Mohammed & Dababat, Alya’ & Su, Chun-Lien, 2023. "A comprehensive review of machine learning and IoT solutions for demand side energy management, conservation, and resilient operation," Energy, Elsevier, vol. 281(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3499-:d:242985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.