IDEAS home Printed from https://ideas.repec.org/a/bla/jamist/v55y2004i5p396-413.html
   My bibliography  Save this article

Text mining: Generating hypotheses from MEDLINE

Author

Listed:
  • Padmini Srinivasan

Abstract

Hypothesis generation, a crucial initial step for making scientific discoveries, relies on prior knowledge, experience, and intuition. Chance connections made between seemingly distinct subareas sometimes turn out to be fruitful. The goal in text mining is to assist in this process by automatically discovering a small set of interesting hypotheses from a suitable text collection. In this report, we present open and closed text mining algorithms that are built within the discovery framework established by Swanson and Smalheiser. Our algorithms represent topics using metadata profiles. When applied to MEDLINE, these are MeSH based profiles. We present experiments that demonstrate the effectiveness of our algorithms. Specifically, our algorithms successfully generate ranked term lists where the key terms representing novel relationships between topics are ranked high.

Suggested Citation

  • Padmini Srinivasan, 2004. "Text mining: Generating hypotheses from MEDLINE," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 55(5), pages 396-413, March.
  • Handle: RePEc:bla:jamist:v:55:y:2004:i:5:p:396-413
    DOI: 10.1002/asi.10389
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asi.10389
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asi.10389?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ola G. El‐Taliawi & Nihit Goyal & Michael Howlett, 2021. "Holding out the promise of Lasswell's dream: Big data analytics in public policy research and teaching," Review of Policy Research, Policy Studies Organization, vol. 38(6), pages 640-660, November.
    2. Ronald N. Kostoff, 2014. "Literature-related discovery: common factors for Parkinson’s Disease and Crohn’s Disease," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(3), pages 623-657, September.
    3. João Guerreiro & Paulo Rita & Duarte Trigueiros, 2016. "A Text Mining-Based Review of Cause-Related Marketing Literature," Journal of Business Ethics, Springer, vol. 139(1), pages 111-128, November.
    4. Jingyang Chen & Qin Liu, 2023. "The Green Consumption Behavior Process Mechanism of New Energy Vehicles Driven by Big Data—From a Metacognitive Perspective," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    5. Andrej Kastrin & Dimitar Hristovski, 2021. "Scientometric analysis and knowledge mapping of literature-based discovery (1986–2020)," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1415-1451, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jamist:v:55:y:2004:i:5:p:396-413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.